
Part 2 - Automate
Infrastructure Monitoring from
Prometheus & Loki with AI-
powered n8n workflows with
AWX or Semaphore UI
(Ansible)

Last Updated

Table of Contents

@February 7, 2026 6:54 PM

Introduction
1. Deploy n8n in Docker

Connect n8n with Claude
Connect n8n with Discord

2. Create An Infrastructure Monitor Workflow
Import The ‘Infrastructure AI Advisory’ Workflow
Output On Discord

3. Plan For An AI-Driven Workflow To Remedy Common Issues
Automation Platform - AWX or Semaphore UI
Risk Register For AI-driven workflows
An Approval Cycle With Discord
Five Stage Approach (Diagrams)

4. Create AWX/Semaphore Remediation Jobs
Create Ansible playbooks
Playbook: restart-service.yml

Playbook: clear-disk-space.yml

Playbook: reboot-host.yml

Playbook: kill-process.yml

File: README.md

Add Jobs To Your Automation Platform
Create an API Token:

Part 2 - Automate Infrastructure Monitoring from Prometheus & Loki with AI-powered n8n workflows with AWX or Semaphore UI (Ansible) 1

Introduction
Would you like to empower AI with certain maintenance tasks over your
infrastructure with an approval workflow via Discord to stay in control? How to
best define a low, medium or high-risk operation and modify AI’s behavior
accordingly to avoid unwanted surprises? In this tutorial, we will build on Part 1
of the tutorial and dive in while leveraging the following technologies:

Prometheus (covered in Part 1) - captures metrics - you will need to install
it with the process-exporter (namedprocess-exporter) module to fetch all the required
details.

Loki (covered in Part 1) - captures logs

Grafana (covered in Part 1) - visualizes data (not required for AI-powered
automation)

n8n (covered in this Part 2) - automation platform (low-code).

5. Discord Bot Set Up
Create a Discord App
Create a Bot
Installation Context
Configure Bot Settings
Set Permissions & Invite Bot
Get Your Channel ID

6. The AI-Assisted Remediation Workflow Into n8n
Update Your Variables
Update Your Credentials
Summary & Manual Interventions
Experience With The Approval Workflow

7. Real Test Scenarios
Test 1 - High CPU Usage
Test 2 - An Inactive Critical Service
Test 3 - Low Disk Space On Proxmox3

8. Security & Functionality Considerations
Adding additional playbooks
How Often To Trigger The Workflow?
Security Considerations
Other Functional Considerations
Limitations / Out of scope
What’s Next - Part 3

Part 2 - Automate Infrastructure Monitoring from Prometheus & Loki with AI-powered n8n workflows with AWX or Semaphore UI (Ansible) 2

Claude AI (or another LLM of your preference)

AWX or Semaphore UI (you can also use another tool like Ansible
Automation Platform (AAP, which replaced Ansible Tower), Spacelift,
Rundeck, etc.)

If you do not have it set up yet, follow my previous tutorial on how to
Deploy Ansible AWX to automate OS patching .

Steps 1 and 2 in this tutorial can be completed without it.

Gitea (or another source version control tool) to store your Ansible
playbooks (same as with AWX).

As the first step, we will deploy n8n and connect it with AI (Claude) to analyze
logs from our monitoring tools regularly to provide us with consolidated advice
about service outages and to suggest tweaks based on metrics (RAM / disk /
CPU usage).

1. Deploy n8n in Docker
You can use the same VM as for Prometheus, Loki and Grafana to deploy n8n in
Docker:

Create directory and a docker-compose file
sudo mkdir -p /opt/n8n
cd /opt/n8n
sudo nano docker-compose.yml

services:
 n8n:
 image: docker.n8n.io/n8nio/n8n:latest
 container_name: n8n
 restart: unless-stopped
 ports:

- "5678:5678"
 environment:

- GENERIC_TIMEZONE=Europe/Prague

Part 2 - Automate Infrastructure Monitoring from Prometheus & Loki with AI-powered n8n workflows with AWX or Semaphore UI (Ansible) 3

https://bachelor-tech.com/detailed-guides/deploy-ansible-awx-to-automate-os-patching/

- TZ=Europe/Prague # Change it according to yours
- N8N_HOST=n8n.yourdomain.priv
- N8N_PORT=5678
- N8N_PROTOCOL=http
- WEBHOOK_URL=http://n8n.yourdomain.priv:5678/
- N8N_SECURE_COOKIE=false
- NODE_ENV=production
Allow selected built-in Node modules (fs, path)
- NODE_FUNCTION_ALLOW_BUILTIN=fs,path
Database - using SQLite for simplicity, can upgrade to PostgreSQL lat

er
- DB_TYPE=sqlite

 volumes:
- n8n_data:/home/node/.n8n
- ./local-files:/files

 networks:
- n8n-network

 healthcheck:
 test: ["CMD-SHELL", "wget -q --spider http://localhost:5678/healthz || e
xit 1"]
 interval: 30s
 timeout: 10s
 retries: 3
 start_period: 30s

volumes:
 n8n_data:
 name: n8n_data

networks:
 n8n-network:
 name: n8n-network

Create local-files directory with correct permissions
sudo mkdir -p local-files
sudo chown -R 1000:1000 local-files

Deploy

Part 2 - Automate Infrastructure Monitoring from Prometheus & Loki with AI-powered n8n workflows with AWX or Semaphore UI (Ansible) 4

docker compose pull
docker compose up -d

Check status
docker compose logs -f

Try accessing it on the website:

Complete your registration to receive a free license key (indicate that you
are not using n8n for work purposes).

Connect n8n with Claude
Head to https://platform.claude.com/dashboard , log in and if you do not
have it already, purchase a credit for $5. Don’t worry, it will last us for quite
a while 😇

Part 2 - Automate Infrastructure Monitoring from Prometheus & Loki with AI-powered n8n workflows with AWX or Semaphore UI (Ansible) 5

https://platform.claude.com/dashboard

Copy over the key and head to n8n. Add a new credential (in case you
cannot find this section, then create a blank workflow and add a step for
Anthropic and create the credential then):

Connect n8n with Discord
In n8n, add another credential for a Discord webhook:

Part 2 - Automate Infrastructure Monitoring from Prometheus & Loki with AI-powered n8n workflows with AWX or Semaphore UI (Ansible) 6

On Discord, modify your existing server / channel settings and add a new
webhook (or create a new server if you do not have one already):

Copy the webhook URL and paste it into the window in n8n that expects the
URL with the webhook data.

2. Create An Infrastructure Monitor Workflow
This is a passive (analysis-only) workflow where we let Claude (or another
LLM) process the results of the metrics and recommend next steps. It’s a good
starter, esp. if you are new to n8n and find the more advanced workflow in the
next Step overwhelming.

Part 2 - Automate Infrastructure Monitoring from Prometheus & Loki with AI-powered n8n workflows with AWX or Semaphore UI (Ansible) 7

In this workflow, we fetch data from Prometheus in terms of (a) CPU / RAM
/ Disk usage and (b) service outages (inactive for critical ones and failed for
any). Firstly, the metrics are all merged together and then processed
together in one JSON.

Then, the ‘brain’ of the workflow kicks in with custom JS code that
processes the metrics to see if an alert needs to be sent.

We pull out relevant logs from Loki in relation to failed or inactive systemd
services that can be used to make a better judgement on why the failure
occurred.

In addition, it checks a file saved in /home/node/.n8n/alert-cache-advisory.json to see
what alerts were sent previously (default is for up to the last 8 hours). This
is to avoid a situation when you get repeatedly spammed with the same
issue if you let this workflow run every 15-30 mins.

If an alert needs to be sent, the metrics are forwarded to Claude (or your
preferred vendor) to make sense of it and recommend a solution. A
message on Discord is then sent out.

Import The ‘Infrastructure AI Advisory’ Workflow
Good news, the hard work of putting it together has already been done for you!
Simply import the workflow into your n8n instance.

Infrastructure Advisory 1.0.json

Part 2 - Automate Infrastructure Monitoring from Prometheus & Loki with AI-powered n8n workflows with AWX or Semaphore UI (Ansible) 8

https://www.notion.so/signed/attachment%3Ad1b3e740-d6d8-49f5-be47-ddab3899cf3d%3AInfrastructure_Advisory_1.0.json?table=block&id=3003861f-db94-801d-a856-fc44172b6b8a&spaceId=c9fd966e-00c1-4c79-9ac5-756f45038f9f&userId=72897741-b7eb-4e30-b14f-54639129f9f3&cache=v2

What to do after the import:

Read the sticky notes on what needs to be set up in terms of the ‘Config’
node.

Add credentials for the relevant services, such as:

Discord Webhook API

Claude API

Prometheus/Loki if you use any authentication (off by default)

Review the Config node - read the sticky notes 😇

Give it a test run! Fix any errors related to variables/credentials that you
may find.

Output On Discord
In my case, a few things got flagged:

Part 2 - Automate Infrastructure Monitoring from Prometheus & Loki with AI-powered n8n workflows with AWX or Semaphore UI (Ansible) 9

No alterations are made, AI is used purely in an advisory role.

We demonstrated a simple workflow that processes recent metrics, fetches
logs when appropriate and alerts you via Discord. The previous cache on
repeated alerts is useful to avoid the situation of getting spammed.

But how about we increase the ‘fun’ and allow AI to handle some of the
remediation tasks (that we pre-define) over our infrastructure? So that we
move from just recommending the corrective action into also implementing it?
Dive with me into part 2 of this tutorial if you feel brave enough 😎

3. Plan For An AI-Driven Workflow To Remedy
Common Issues
In order to add AI into the picture and entrust it with some degree of autonomy,
we will need to leverage what we already built in this tutorial + utilize an

Part 2 - Automate Infrastructure Monitoring from Prometheus & Loki with AI-powered n8n workflows with AWX or Semaphore UI (Ansible) 10

automation platform that will execute pre-defined jobs in a controlled fashion.

This is a ‘middle-ground’ approach where we do not give AI full autonomy over
the infrastructure but keep some level of control. Let me expand on that.

Automation Platform - AWX or Semaphore UI
The following workflow is built with two automation platforms in mind - AWX
and Semaphore. If you use another one that supports Ansible (such as Spacelift
or Rundeck), you will need to revise the URLs for launching and polling jobs and
set up separate credentials, but most of the steps will still apply.

Do you not have an automated platform deployment app built on Ansible set
up yet? Catch up by following this tutorial on how to Deploy Ansible AWX
to automate OS patching.

Risk Register For AI-driven workflows
To put it simply, we need to decide what activity constitutes a low, medium and
high risk operation and to what degree we allow AI to handle it. Find some
examples below:

Low risk - operations that when executed, would be unlikely to lead to
service outage. Metrics may indicate that if nothing is done, an outage
would eventually occur, such as disk running out or RAM / CPU usage is >
90% for more than 5 minutes. Alternatively, when a service is stopped
(such as the example with fail2ban). In this case, a Discord query is sent
with a request to approve an action. Timeout 5 minutes. If no response the
workflow will proceed.

Medium risk - operations that may lead to a short but controlled outage.
Example includes a reboot of a VM or an LXC container and restarting
processes. A Discord approval request is sent with a timeout of 15 minutes.
If no response is provided, implement it anyway.

High risk - operations that, when implemented, could lead to unexpected
outcomes. For example, when suggesting infrastructure changes such as
moving a VM/container from one Proxmox host to another due to more
storage/RAM/CPU availability. In addition, reboots of Type 1 hypervisors
would fall under this category (this is defined in the AI prompt). This could

Part 2 - Automate Infrastructure Monitoring from Prometheus & Loki with AI-powered n8n workflows with AWX or Semaphore UI (Ansible) 11

https://spacelift.io/
https://www.rundeck.com/
https://bachelor-tech.com/detailed-guides/deploy-ansible-awx-to-automate-os-patching/
https://bachelor-tech.com/detailed-guides/deploy-ansible-awx-to-automate-os-patching/
https://bachelor-tech.com/detailed-guides/deploy-ansible-awx-to-automate-os-patching/

be problematic when HA is implemented (such as on a Galera cluster). In
this case, an alert can be sent to Discord with a timeout of 1 hour and if no
response is given (or a rejection), then do NOT proceed.

An Approval Cycle With Discord
Previously we utilized Discord to send us notifications on what needs fixing
with recommended steps to do so. Now, we will utilize Discord as a means of
two-way communication to approve or reject a change. And for some items, we
can define that they will be implemented anyway if there is no response. This
brings us to a ‘risk register’.

Feature Low Risk Medium Risk High Risk

Examples
Restart service,
Clear disk

Reboot host, Kill
process

VM migration, Type-1
hypervisor reboots

Timeout 5 minutes 15 minutes 60 minutes

On Timeout ✅ APPROVE ✅ APPROVE ❌ DENY

Cancel with ❌ Reply ❌ Reply ❌ Reply

Approve with ✅ Reply ✅ Reply ✅ Reply

Five Stage Approach (Diagrams)

Do you like Mermaid diagrams? You can download the full version below (the
Stages described below are redacted for easier readibility):

remediation-workflow.mermaid

Stage 1: Gather metrics from each host

Get CPU logs (available and top consumers)

Get RAM logs (available and top consumers)

Get Disk usage logs

Get Disk I/O pressure logs

Part 2 - Automate Infrastructure Monitoring from Prometheus & Loki with AI-powered n8n workflows with AWX or Semaphore UI (Ansible) 12

https://www.notion.so/signed/attachment%3Ac2b5754e-6e99-4e90-b519-f76d25c8c4d6%3Aremediation-workflow.mermaid?table=block&id=3003861f-db94-80fe-8259-c6c608ea01ff&spaceId=c9fd966e-00c1-4c79-9ac5-756f45038f9f&userId=72897741-b7eb-4e30-b14f-54639129f9f3&cache=v2

Get inactive / deactivating for critical services (pre-defined in our
variables)

Get failed services

Fetch relevant logs from Loki for systemd services that are not
working

Stage 2: AI-decision engine

AI analysis of the logs:

No issues - workflow finishes

Issues without pre-defined templates - manual intervention
required

Issues with pre-defined templates - a template ID is matched

Templates available - you can add your own. At the time of deployment,
AI can assign one of the following:

Systemd is inactive / stopped → restart a service

Disk utilization is over a threshold (or close to it) → run a disk space
clean up job

System issues (not responsive) → trigger a reboot job

Part 2 - Automate Infrastructure Monitoring from Prometheus & Loki with AI-powered n8n workflows with AWX or Semaphore UI (Ansible) 13

A process is not responding or faces RAM leak → call kill a process
job

Stage 3: Discord Interaction

Categorize the failures based on a risk register (low, medium, high) -
more about that below.

Utilize a Discord bot to post a summary of issues (if more than 2 issues)
and the proposed solution for the Sysadmin to approve or reject with
pre-defined timeout periods.

Low and medium level risk jobs get auto-approved on timeout.

Findings get saved in a file to ensure that subsequent runs do not flag
the same issue for a pre-defined amount of hours (default is 8). This
value can be changed in the ‘Config’ node.

A request is sent to the respective automation platform (AWX /
Semaphore) to trigger the job selected by AI.

Part 2 - Automate Infrastructure Monitoring from Prometheus & Loki with AI-powered n8n workflows with AWX or Semaphore UI (Ansible) 14

Stage 4 - Automation Execution

Monitor the AWX or Semaphore job on a regular basis (every 20
seconds)

Get results for further processing by AI in the next stage

Stage 5 - Verification & Closing

Get logs from the automation platform

Get additional logs via Loki to confirm the result

Process the logs from both sources by AI

Post on Discord a structured feedback

If more additional issues were flagged earlier, loop back to stage 2 for
additional requests to be approved.

Part 2 - Automate Infrastructure Monitoring from Prometheus & Loki with AI-powered n8n workflows with AWX or Semaphore UI (Ansible) 15

Now when the structure is explained, we will need to set up those templates.

4. Create AWX/Semaphore Remediation Jobs
If we take a step back, the automation platform will need to handle the
following:

1. The workflow is triggered on a regular basis (e.g. every 15-30 minutes)
from n8n and logs are analyzed using Prometheus API. Additional logs from
Loki are pulled for failing/inactive critical system services.

2. AI makes a judgement on the severity and type of action that needs to be
taken.

3. Discord notification is fired up with a timeout respective to the level of risk.

4. If approved (or is auto-passed on time out), Claude (or another AI of your
choice) decides which playbook in AWX or Semaphore to run.

5. n8n calls AWX or Semaphore UI API to launch one of the respective
playbook per job. Each one of them can take service_name and target_host as
variables passed on from n8n to AWX:

restart-service.yml

clear-disk-space.yml

Part 2 - Automate Infrastructure Monitoring from Prometheus & Loki with AI-powered n8n workflows with AWX or Semaphore UI (Ansible) 16

reboot-host.yml

kill-process.yml

7. AWX or Semaphore UI handle SSH, credentials, logging (this was already
set up in a guide I referenced above).

8. The n8n workflow waits for the results and informs the admin via Discord.
Then loops back in case more issues were identified.

Create Ansible playbooks
In your source version control tool, create a new folder (I called mine ansible-

remediation). See below for the structure:

ansible-remediation/
├── playbooks/
 │ ├── restart-service.yml

 │ ├── clear-disk-space.yml

 │ ├── reboot-host.yml

 │ ├── kill-process.yml

├── inventory/
 │ └── (use existing dynamic inventory or add custom hosts)
└── README.md

Playbook: restart-service.yml

Restart a failed systemd service
Variables: target_host, service_name
Risk: LOW

- name: Restart Failed Service
hosts: "{{ target_host }}"
become: yes
gather_facts: no

vars:
 max_retries: 3

Part 2 - Automate Infrastructure Monitoring from Prometheus & Loki with AI-powered n8n workflows with AWX or Semaphore UI (Ansible) 17

 retry_delay: 5

 tasks:
- name: Check current service status

ansible.builtin.systemd:
name: "{{ service_name }}"

register: service_before
failed_when: false

- name: Fail if service does not exist
ansible.builtin.fail:

 msg: "Service {{ service_name }} does not exist on {{ target_host }}"
 when: service_before.status is not defined

- name: Restart the service
ansible.builtin.systemd:

 name: "{{ service_name }}"
 state: restarted
 register: restart_result
 failed_when: false

- name: Wait for service to stabilize
ansible.builtin.systemd:

name: "{{ service_name }}"
register: service_after
until: service_after.status.ActiveState in ['active', 'running']
retries: "{{ max_retries }}"
delay: "{{ retry_delay }}"
failed_when: false

- name: Set result fact
ansible.builtin.set_fact:

 remediation_result:
 success: "{{ service_after.status.ActiveState | default('unknown') in
['active', 'running'] }}"
 service: "{{ service_name }}"
 host: "{{ target_host }}"
 state_before: "{{ service_before.status.ActiveState | default('unknow

Part 2 - Automate Infrastructure Monitoring from Prometheus & Loki with AI-powered n8n workflows with AWX or Semaphore UI (Ansible) 18

n') }}"
 state_after: "{{ service_after.status.ActiveState | default('failed') }}"
 restart_attempted: "{{ restart_result is success }}"
 message: "{{ 'Service ' + service_name + ' restarted successfully, no
w ' + (service_after.status.ActiveState | default('unknown')) if service_after.
status.ActiveState | default('unknown') in ['active', 'running'] else 'Service '
+ service_name + ' failed to restart, state: ' + (service_after.status.ActiveSt
ate | default('unknown')) }}"

 - name: Output result
 ansible.builtin.debug:
 var: remediation_result

Playbook: clear-disk-space.yml

Clean space on a drive & identify large files
Variables: target_host
Risk: LOW

- name: Clear disk space and analyze usage
 hosts: "{{ target_host }}"
 become: yes
 tasks:
 - name: Get disk usage before cleanup
 command: df -h /
 register: disk_before

 - name: Find largest directories in /var
 shell: du -sh /var/*/ 2>/dev/null | sort -rh | head -10
 register: var_usage
 ignore_errors: yes

 - name: Find largest files over 100MB (ignore external storage)
 ansible.builtin.shell: |

Part 2 - Automate Infrastructure Monitoring from Prometheus & Loki with AI-powered n8n workflows with AWX or Semaphore UI (Ansible) 19

 find / -xdev -type f -size +100M 2>/dev/null | head -20
 async: 300 # 5 minute max
 poll: 10
 register: large_files
 ignore_errors: yes

- name: Check apt cache size
shell: du -sh /var/cache/apt/archives 2>/dev/null || echo "0 /var/cache/

apt/archives"
 register: apt_cache
 ignore_errors: yes

- name: Check journal size
shell: journalctl --disk-usage 2>/dev/null || echo "Journal size unknow

n"
register: journal_size
ignore_errors: yes

- name: Check docker disk usage
shell: docker system df 2>/dev/null || echo "Docker not installed"
register: docker_usage
ignore_errors: yes

- name: Clean apt cache
apt:

 autoclean: yes
 autoremove: yes
 ignore_errors: yes

- name: Clean old journal logs
shell: journalctl --vacuum-time=7d
register: journal_cleaned
ignore_errors: yes

- name: Clean tmp files older than 7 days
shell: find /tmp -type f -mtime +7 -delete 2>/dev/null || true
ignore_errors: yes

Part 2 - Automate Infrastructure Monitoring from Prometheus & Loki with AI-powered n8n workflows with AWX or Semaphore UI (Ansible) 20

 - name: Clean old log files
 shell: |
 find /var/log -type f -name "*.gz" -mtime +30 -delete 2>/dev/null || tru
e
 find /var/log -type f -name "*.old" -delete 2>/dev/null || true
 ignore_errors: yes

 - name: Get disk usage after cleanup
 command: df -h /
 register: disk_after

 - name: Display report
 vars:
 report_text: |
 ========== DISK CLEANUP REPORT ==========

 BEFORE cleanup: {{ disk_before.stdout_lines[1] | default('unknown')
}}
 AFTER cleanup: {{ disk_after.stdout_lines[1] | default('unknown') }}

 === Top 10 directories in /var ===
 {{ var_usage.stdout | default('Unable to scan') }}

 === Large files over 100MB ===
 {{ large_files.stdout | default('None found') }}

 === Cache and Log sizes ===
 APT Cache: {{ apt_cache.stdout | default('unknown') }}
 Journal: {{ journal_size.stdout | default('unknown') }}

 === Docker usage ===
 {{ docker_usage.stdout | default('Not available') }}

 === Cleanup actions performed ===
 Journal vacuum: {{ journal_cleaned.stdout | default('skipped') }}

 === Recommendations ===
 Review large files above for potential removal

Part 2 - Automate Infrastructure Monitoring from Prometheus & Loki with AI-powered n8n workflows with AWX or Semaphore UI (Ansible) 21

 Check /var/log for application-specific logs
 Consider docker system prune if Docker usage is high
 ==
 debug:
 msg: "{{ report_text }}"

Playbook: reboot-host.yml

Reboot a host
Variables: target_host
Risk: MEDIUM

- name: Reboot Host
 hosts: "{{ target_host }}"
 become: yes
 gather_facts: no

 vars:
 reboot_timeout: 300

 tasks:
 - name: Record uptime before reboot
 ansible.builtin.command: uptime -s
 register: uptime_before
 changed_when: false

 - name: Reboot the host
 ansible.builtin.reboot:
 reboot_timeout: "{{ reboot_timeout }}"
 msg: "Automated reboot initiated by n8n remediation workflow"

 - name: Record uptime after reboot
 ansible.builtin.command: uptime -s
 register: uptime_after
 changed_when: false

Part 2 - Automate Infrastructure Monitoring from Prometheus & Loki with AI-powered n8n workflows with AWX or Semaphore UI (Ansible) 22

 - name: Verify host is responsive
 ansible.builtin.ping:

 - name: Set result fact
 ansible.builtin.set_fact:
 remediation_result:
 success: true
 host: "{{ target_host }}"
 uptime_before: "{{ uptime_before.stdout }}"
 uptime_after: "{{ uptime_after.stdout }}"
 message: "Host {{ target_host }} rebooted successfully. Was up sinc
e {{ uptime_before.stdout }}, now up since {{ uptime_after.stdout }}"

 - name: Output result
 ansible.builtin.debug:
 var: remediation_result

Playbook: kill-process.yml

Kill a runaway process
Variables: target_host, process_name or process_pid, signal (optional, de
fault TERM)
Risk: MEDIUM

- name: Kill Runaway Process
 hosts: "{{ target_host }}"
 become: yes
 gather_facts: no

 vars:
 kill_signal: "{{ signal | default('TERM') }}"
 use_pid: "{{ process_pid is defined and process_pid | string | length > 0
}}"
 use_name: "{{ process_name is defined and process_name | string | leng

Part 2 - Automate Infrastructure Monitoring from Prometheus & Loki with AI-powered n8n workflows with AWX or Semaphore UI (Ansible) 23

th > 0 }}"

 tasks:

 # Input validation
- name: Validate that at least one target is provided

ansible.builtin.assert:
 that:

- use_pid | bool or use_name | bool
fail_msg: "Either process_name or process_pid must be provided"

- name: Validate process_name contains only safe characters
ansible.builtin.assert:

 that:
- process_name is regex('^[a-zA-Z0-9._:/@*? -]+$')

 fail_msg: "Invalid process name '{{ process_name }}' - contains disallo
wed characters"
 when: use_name | bool

- name: Validate process_pid is numeric
ansible.builtin.assert:

 that:
- process_pid | string is regex('^[0-9]+$')

 fail_msg: "Invalid PID '{{ process_pid }}' - must be numeric"
 when: use_pid | bool

- name: Validate kill signal
ansible.builtin.assert:

 that:
- kill_signal is regex('^[A-Z0-9]+$')

fail_msg: "Invalid signal '{{ kill_signal }}'"

 # Discover PIDs
 # When a PID is provided, use it directly. When only a name is given,
 # find matching PIDs. Never do both - PID takes precedence.

- name: Find PIDs by process name
ansible.builtin.shell: >

Part 2 - Automate Infrastructure Monitoring from Prometheus & Loki with AI-powered n8n workflows with AWX or Semaphore UI (Ansible) 24

 pgrep -x '{{ process_name }}' | head -5
 register: found_pids
 changed_when: false
 failed_when: false
 when: use_name | bool and not (use_pid | bool)

 - name: Fall back to full command-line match if exact match found nothin
g
 ansible.builtin.shell: >
 pgrep -f '{{ process_name }}' | head -5
 register: found_pids_fuzzy
 changed_when: false
 failed_when: false
 when:
 - use_name | bool
 - not (use_pid | bool)
 - found_pids.stdout_lines | default([]) | length == 0

 # Determine if process of PID is to be used
 - name: Set target PIDs
 ansible.builtin.set_fact:
 pids_to_kill: >-
 {{
 [process_pid | string] if (use_pid | bool)
 else (found_pids.stdout_lines | default([]))
 if (found_pids.stdout_lines | default([]) | length > 0)
 else (found_pids_fuzzy.stdout_lines | default([]))
 }}

 # Fail-safe
 - name: Fail if no matching processes found
 ansible.builtin.fail:
 msg: >-
 No processes found matching
 {{ ('PID ' + process_pid | string) if (use_pid | bool)
 else ('name "' + process_name + '"') }}
 on {{ target_host }}
 when: pids_to_kill | length == 0

Part 2 - Automate Infrastructure Monitoring from Prometheus & Loki with AI-powered n8n workflows with AWX or Semaphore UI (Ansible) 25

 # Capture state before kill
- name: Get process details before kill

ansible.builtin.shell: >
 ps -p {{ pids_to_kill | join(',') }} -o pid,user,%cpu,%mem,start,comman
d --no-headers 2>/dev/null || true
 register: process_details
 changed_when: false

 # Kill the process
- name: Send signal to target PIDs

ansible.builtin.shell: "kill -{{ kill_signal }} {{ item }}"
loop: "{{ pids_to_kill }}"
register: kill_results
failed_when: false

 # Verify - adjust as per your needs
- name: Wait for processes to terminate

ansible.builtin.pause:
 seconds: 9

- name: Check if PIDs are still running
ansible.builtin.shell: "ps -p {{ pids_to_kill | join(',') }} -o pid= 2>/dev/null

| wc -l"
 register: remaining
 changed_when: false
 failed_when: false

- name: Escalate to SIGKILL if TERM did not work
ansible.builtin.shell: "kill -KILL {{ item }}"
loop: "{{ pids_to_kill }}"
when:

- remaining.stdout | default('0') | trim | int > 0
- kill_signal == 'TERM'

 register: kill_escalation
 failed_when: false

- name: Wait after SIGKILL escalation

Part 2 - Automate Infrastructure Monitoring from Prometheus & Loki with AI-powered n8n workflows with AWX or Semaphore UI (Ansible) 26

 ansible.builtin.pause:
 seconds: 2
 when:

- remaining.stdout | default('0') | trim | int > 0
- kill_signal == 'TERM'

- name: Final verification
ansible.builtin.shell: "ps -p {{ pids_to_kill | join(',') }} -o pid= 2>/dev/null

| wc -l"
 register: final_remaining
 changed_when: false
 failed_when: false

- name: Set result fact
ansible.builtin.set_fact:

 remediation_result:
 success: "{{ final_remaining.stdout | default('0') | trim | int == 0 }}"
 host: "{{ target_host }}"
 process: "{{ process_name | default(process_pid | string) }}"
 pids_killed: "{{ pids_to_kill }}"
 signal_sent: "{{ kill_signal }}"
 escalated_to_kill: "{{ (remaining.stdout | default('0') | trim | int > 0) an
d kill_signal == 'TERM' }}"
 details_before: "{{ process_details.stdout | default('N/A') }}"
 message: >-
 {{
 'Process ' + (process_name | default(process_pid | string))

+ ' (PIDs: ' + (pids_to_kill | join(', '))
+ ') killed successfully with ' + kill_signal
+ (' (escalated to SIGKILL)' if ((remaining.stdout | default('0') | trim

| int > 0) and kill_signal == 'TERM') else '')
 if (final_remaining.stdout | default('0') | trim | int == 0)
 else 'Process ' + (process_name | default(process_pid | string))

+ ' may still be running after ' + kill_signal + ' + SIGKILL signals'
 }}

- name: Output result

Part 2 - Automate Infrastructure Monitoring from Prometheus & Loki with AI-powered n8n workflows with AWX or Semaphore UI (Ansible) 27

 ansible.builtin.debug:
 var: remediation_result

File: README.md

Written by Claude 4.6 based on my notes and code analysis

Ansible Remediation Playbooks

Automated remediation playbooks designed to be triggered by an AI-power
ed n8n
workflow via AWX or Semaphore UI. These playbooks handle common infr
astructure
issues detected through Prometheus and Loki monitoring.

Requirements

- Ansible 2.12+
- Target hosts must be accessible via SSH with sudo privileges
- Designed for Debian/Ubuntu-based systems (apt, systemd, journalctl)

- `clear-disk-space.yml` uses `apt` for cache cleanup; adapt for RHEL/Cen
tOS
- AWX or Semaphore UI configured with machine credentials for target hos
ts

Playbooks

Playbook	Risk Level	Description	Required Variables
`restart-service.yml`	LOW	Restarts a failed systemd service with retry l	
ogic and state verification	`target_host`, `service_name`		
`clear-disk-space.yml`	LOW	Cleans temporary files, apt cache, old jour	
nals, and reports disk usage	`target_host`		
`reboot-host.yml`	MEDIUM	Reboots host with pre/post diagnostics and	
connectivity verification	`target_host`		
`kill-process.yml`	MEDIUM	Terminates a runaway process by name or P	
ID with verification | `target_host`, `process_name` (or `process_pid`), `sign

Part 2 - Automate Infrastructure Monitoring from Prometheus & Loki with AI-powered n8n workflows with AWX or Semaphore UI (Ansible) 28

al` (optional, default: TERM) |

Variables

All playbooks require `target_host` — the inventory hostname of the target.
Variables are passed as extra_vars from n8n via the AWX/Semaphore API.

Optional Variables

Variable	Playbook	Default	Description
`service_name`	restart-service	*(required)*	systemd unit name (e.g., `
nginx.service`)			
`process_name`	kill-process	—	Process name for `pkill`
`process_pid`	kill-process	—	Specific PID to kill
`signal`	kill-process	`TERM`	Kill signal (`TERM`, `KILL`, `HUP`, etc.)
`max_retries`	restart-service	`3`	Retry count for service stabilization
`retry_delay`	restart-service	`5`	Seconds between retries
`reboot_timeout`	reboot-host	`300`	Seconds to wait for host to come b
ack |

Output Format

All playbooks set a `remediation_result` fact and output it via `debug`.
This structured output is consumed by the n8n workflow for AI analysis.

Example:
```json
{
  "remediation_result": {
    "success": true,
    "host": "web1",
    "service": "fail2ban.service",
    "state_before": "inactive",
    "state_after": "active",
    "message": "Service fail2ban.service restarted successfully, now active"
  }
}

Part 2 - Automate Infrastructure Monitoring from Prometheus & Loki with AI-powered n8n workflows with AWX or Semaphore UI (Ansible) 29



```

Safety Features

- **No user data deletion:** `clear-disk-space` only removes system cach
e,
 old logs (>30 days), and temp files (>7 days)
- **Graceful termination:** `kill-process` defaults to SIGTERM, allowing

processes to clean up before exit, only then proceeds to SIGKILL.
- **State verification:** All playbooks verify the outcome before reporting

success
- **Pre/post diagnostics:** `reboot-host` captures uptime, dmesg, and

service status before and after reboot

Manual Testing

Before connecting to the automated workflow, test each playbook manuall
y:
```bash
# Test restart-service
ansible-playbook playbooks/restart-service.yml \

-e target_host=web1 \
-e service_name=fail2ban.service

# Test clear-disk-space
ansible-playbook playbooks/clear-disk-space.yml \

-e target_host=proxmox3

# Test reboot-host (CAUTION: this will reboot the target)
ansible-playbook playbooks/reboot-host.yml \

-e target_host=test-vm

# Test kill-process
ansible-playbook playbooks/kill-process.yml \

-e target_host=web1 \
-e process_name=stress

```

Part 2 - Automate Infrastructure Monitoring from Prometheus & Loki with AI-powered n8n workflows with AWX or Semaphore UI (Ansible) 30

Integration

These playbooks are triggered by the n8n "Infrastructure Auto-Remediatio
n"
workflow. See the full tutorial at: https://bachelor-tech.com/

License

MIT

Add Jobs To Your Automation Platform
In AWX:

Sync your source version control tool with AWX (Resources → Projects →
click on the ‘Sync’ button) - assuming you have this set up already.

Add the 4 jobs - one for each template.

Ensure you tick the box near the Variables section called ‘Prompt on
launch’, so that n8n can pass target_host and service_name .

Similarly, tick the box called ‘Privilege Escalation’ to grant sudo
permissions (this may not be required if your ansible credential already
has become configured with a password method).

Part 2 - Automate Infrastructure Monitoring from Prometheus & Loki with AI-powered n8n workflows with AWX or Semaphore UI (Ansible) 31

Once you add all four, note their IDs (as per their URL). In my case, these
are:

R1 - Restart Service - ID: 38

R2 - Clear Disk Space - ID: 39

R3 - Reboot Host - ID: 40

R4 - Kill A Process - ID: 41

(Note: R stands for Remedy)

As for Semaphore UI:

Go to your project → Task Templates.

Part 2 - Automate Infrastructure Monitoring from Prometheus & Loki with AI-powered n8n workflows with AWX or Semaphore UI (Ansible) 32

The template ID is visible in the URL when you click on a template, such
as: https://your-semaphore/project/1/templates/5 → in this example, the template ID
is number 5 and the project ID is 1.

Enter both values in the Config node.

Create an API Token:
This is to ensure that n8n can reach your automation platform of choice.

In AWX, go to Users → your user → Tokens → Add

Scope: Write (leave the Application field empty)

Copy the token to your password manager to be used once we import
the workflow.

With the automated templates being set up, there is one more step we need to
do before importing the actual workflow - a Discord bot needs to be
configured. This is because of the introduction of an approval workflow that we
will introduce into the workflow - to maintain control while valuing AI-assisted
automation.

5. Discord Bot Set Up
In order to make the workflows interactive within Discord based on what AI
determines that needs to be implemented, we will need to set up a bot. It is a
relatively simple task but do follow along if you have not done it before. It
should take less than 10 minutes.

Part 2 - Automate Infrastructure Monitoring from Prometheus & Loki with AI-powered n8n workflows with AWX or Semaphore UI (Ansible) 33

Create a Discord App
Go to https://discord.com/developers/applications

Click "New Application"

Name it something like Infrastructure Bot

Click on the Create button. Agree with the T&C (there may also be a
CAPTCHA to pass through).

Create a Bot
In your new application, click "Bot" in the left sidebar

Under Token, click on the "Reset Token" button

Copy the token to your password vault, as it will not appear again.

Installation Context
Go to the new ‘Installation’ tab.

Scroll down to the ‘Install Link’ section and set it to ‘None’.

Save changes.

Configure Bot Settings
On the Bot page, scroll down and enable:

Setting Value

Public Bot Off (only you can add it)

Requires OAuth2 Code Grant Off (by default)

Presence Intent Off (by default)

Server Members Intent Off (by default)

Message Content Intent ON (required to read messages - vital for our set up)

Set Permissions & Invite Bot
Go to the OAuth2 menu option.

Under Scopes, check:

bot

Under Bot Permissions, check:

Part 2 - Automate Infrastructure Monitoring from Prometheus & Loki with AI-powered n8n workflows with AWX or Semaphore UI (Ansible) 34

https://discord.com/developers/applications

Read Message History

Send Messages

Add Reactions

View Channels

Copy the generated URL at the bottom - it looks like:
https://discord.com/api/oauth2/authorize?client_id=123456789&permissions=76800&scope=bot

Get Your Channel ID
In Discord, go to User Settings → Advanced → Enable Developer Mode

Right-click on your monitoring channel → "Copy Channel ID"

Save the value, such as 1234567890123456789

With Discord being set up, we can finally import the AI-assisted workflow!

6. The AI-Assisted Remediation Workflow Into n8n
Now to the exciting step, the ‘main meal of the day’ - let’s put it all together!
Create a new n8n workflow and import the following file:

Part 2 - Automate Infrastructure Monitoring from Prometheus & Loki with AI-powered n8n workflows with AWX or Semaphore UI (Ansible) 35

AI-Assisted Infrastructure Auto-Remediation 1.0.json

Update Your Variables
In the ‘Config node’, edit all the variables in there to match your
environment. This way, you change these values in one node and do not
have to worry about changing it in others.

As per the sticky notes in the workflow, this includes:

Hosts:Ports → for Prometheus, Loki and Automation platform (AWX /
Semaphore UI)

Discord Channel ID

Template IDs to match them to the correct jobs

List of critical services to monitor (what must be ‘active’)

Timing variables - ignore repeated issues for x hours, how long should
Loki look back in the logs.

Thresholds - CPU, RAM, disk space, IO pressure values.

Misc - your timezone and limit for AI token number per interaction
(default is 1024) - the bot is advised to respond within that limit to
ensure that the JSON file arrives complete (otherwise it might get cut
off).

Update Your Credentials

Part 2 - Automate Infrastructure Monitoring from Prometheus & Loki with AI-powered n8n workflows with AWX or Semaphore UI (Ansible) 36

https://www.notion.so/signed/attachment%3A268af2c5-802e-429d-ba53-6cccd330a869%3AAI-Assisted_Infrastructure_Auto-Remediation_1.0.json?table=block&id=3003861f-db94-80ad-9d3b-e4c501a74429&spaceId=c9fd966e-00c1-4c79-9ac5-756f45038f9f&userId=72897741-b7eb-4e30-b14f-54639129f9f3&cache=v2

This part is a bit tedious, as you need to add your own credentials for all the
hosts and services where you use authentication. Unless there is an easier
way that I have not discovered yet, you may need to click through the
nodes to ensure that authentication is enabled wherever required.

Ensure that you cover the following:

Discord API (not webhook!)

Prometheus, Loki - if you use any authentication (without by default)

Anthropic account - if you prefer to use another LLM, change the tile
and copy paste the text in it.

💡 When specifying an AWX token, the name needs to be Authorization and
the Value needs to start with Bearer <YOUR_TOKEN> - do not just copy
paste the token into it, you need the word Bearer before it.

Summary & Manual Interventions
In this more complex workflow, with more issues being flagged, the list of
affected hosts may become overwhelming. For this reason, when two or
more issues are found, a summary is sent before diving into each and
before the approval workflow kicks in.

Similarly, some issues may require manual intervention and thus cannot be
processed using a pre-defined automated job. Those will be flagged before
the approval workflow kicks in with recommended actions (logs from Loki
are pulled to provide more accurate information).

Note: The caching file in the remediation workflow is stored in
/home/node/.n8n/alert-cache.json (instead of alert-cache-advisory.json).

Part 2 - Automate Infrastructure Monitoring from Prometheus & Loki with AI-powered n8n workflows with AWX or Semaphore UI (Ansible) 37

Here is an example of what it looks like in practice:

In case you would prefer it handled differently, you can modify the
respective nodes accordingly.

Experience With The Approval Workflow
This is the nice touch of this approach - we remain in control of what gets done
or not when we approve it, reject it or leave it to time out.

An example of a low-risk item that is rejected:

Part 2 - Automate Infrastructure Monitoring from Prometheus & Loki with AI-powered n8n workflows with AWX or Semaphore UI (Ansible) 38

An example of low risk item that is timed out and thus carried out (high CPU
usage):

With variables and credentials being set up and with taking into account how
the approval workflow works, we can proceed with some real tests!

7. Real Test Scenarios

Part 2 - Automate Infrastructure Monitoring from Prometheus & Loki with AI-powered n8n workflows with AWX or Semaphore UI (Ansible) 39

Now when the workflow is set up and explained, let us look into a few real case
scenarios to understand how it works.

Test 1 - High CPU Usage
I have simulated a situation when in one LXC (container), I ran the following
command to trigger a CPU stress test:

stress --vm 1 --vm-bytes $(awk '/MemTotal/{printf "%d\n", $2 * 0.8}' /pro
c/meminfo)k --timeout 600

The CPU started maxing out straight away, as visible in Proxmox:

After a couple of minutes, the workflow in n8n was executed and the result
was clear:

Part 2 - Automate Infrastructure Monitoring from Prometheus & Loki with AI-powered n8n workflows with AWX or Semaphore UI (Ansible) 40

I approved the remediation to go ahead and a job in AWX was triggered:

Since I had the command running in a Terminal, I noticed that it got
terminated:

The Discord message confirmed the findings:

Test 2 - An Inactive Critical Service
In this scenario, the fail2ban service on a web1 VM is made inactive by
running sudo systemctl stop fail2ban .

Part 2 - Automate Infrastructure Monitoring from Prometheus & Loki with AI-powered n8n workflows with AWX or Semaphore UI (Ansible) 41

The workflow picks it up on its next run and offers to restart it
automatically:

The workflow triggers an AWX job and confirms that the service is back up:

The result on Discord confirms the findings:

Part 2 - Automate Infrastructure Monitoring from Prometheus & Loki with AI-powered n8n workflows with AWX or Semaphore UI (Ansible) 42

Now to spice things up a bit, I also made a config error in the
/etc/fail2ban/jail.local file and then stopped the service. I wanted to see how will

AI handle that. As you can see, the analysis explains clearly

Test 3 - Low Disk Space On Proxmox3
In test 3, I temporarily lowered the threshold for disk space to get a
Proxmox host flagged by the workflow. Due to a definition that any type 1
hypervisor operations are to be considered HIGH risk, AI made the correct
judgement. If not approved within an hour, the remediation template would
not get executed. I approved it to see what happens.

The result in AWX revealed that not much could be removed:

Part 2 - Automate Infrastructure Monitoring from Prometheus & Loki with AI-powered n8n workflows with AWX or Semaphore UI (Ansible) 43

Our playbook is designed to only remove residual / temporary files, so if the
host is filled with ISO images and backups, it would not really do much
anyway, as can be seen below.

💡 You can easily modify the ‘Message a Model’ node to fit your needs,
define exceptions or even remove certain metrics from the Alloy
agent monitoring to ensure that a mission critical host will never be
affected by the workflow. I have put a placeholder in that node that
any changes on a Type 1 hypervisor will be flagged as high risk. This
worked during my testing phase but may benefit from more specific
guidance and validation.

More tests could be conducted and I did run many in my environment. The
three above demonstrate the functionality sufficiently. Now let’s look into what

Part 2 - Automate Infrastructure Monitoring from Prometheus & Loki with AI-powered n8n workflows with AWX or Semaphore UI (Ansible) 44

has not been covered in this tutorial from the security perspective and what are
other desirable features that could be implemented.

8. Security & Functionality Considerations
This was quite an adventure! Some might like just the simpler advisory
workflow, others the semi-autonomous handling of common issues that may
occur in your infrastructure.

Adding additional playbooks
You can add your own remediation job into it easily. What needs to be done to
make it happen?

a. Create another playbook in your chosen automation platform.

b. Add a variable in your Config to specify the template ID.

c. Modify the prompt for Claude to take it into account.

d. Modify the ‘Build Automation Platform Config’ node in n8n.

How Often To Trigger The Workflow?
The recommended period of time is every 15-30 minutes. Adjust the log polling
period for Loki based on that (for example, if you run it every 15 minutes, then
pull logs back in time only for that time period).

What you want to prevent is a situation like this:

Run the workflow every 15mins

Logs from Loki look 60mins back

Such a setup may lead into issues where AI would be evaluating logs from the
time before the issue was fixed and may end up suggesting the same kind of
remediation it did previously even though the issue is already addressed.

Part 2 - Automate Infrastructure Monitoring from Prometheus & Loki with AI-powered n8n workflows with AWX or Semaphore UI (Ansible) 45

💡 For example, let's imagine a CPU spikes and a job is suggested (such
as a host reboot). It works and a subsequent check 15mins later will
not flag any issue, so there will be no need to pull logs from Loki.
In the next cycle 15mins later, however, another issue occurs with an
app consuming too much RAM. Since logs are pulled from 60mins
ago, they could result in two suggested jobs, while only one is
relevant at that point.

Security Considerations
Due to the length and focus of the article on delivering functionality, we have
not looked more in details into the security aspect of the set up, esp. when
preparing such a workflow for production. Authentication and HTTPS access
has not been covered, yet it is essential for production-ready set ups. If you are
considering using a workflow like this in production, consider the following
standard security features:

Reverse proxy with TLS for n8n (Caddy/nginx)

Basic auth or OAuth2 proxy for Prometheus/Loki

If you need to use external packages and thus use
the NODE_FUNCTION_ALLOW_EXTERNAL directive, please restrict it to only the
required packages

Set allowUnauthorizedCerts to false in production and provide proper certificates
(even if sources from OPNSense’s ACME service).

Deploy Fail2ban on the host running Docker containers

Audit trail enhancement: The Discord messages provide a human-
readable audit log, but for compliance, consider writing remediation events
to a structured log (ELK/Loki) with timestamps, approvers, and outcomes.

JSON Validation: While Claude's JSON responses are generally reliable,
the Parse Claude Response we are relying on the output from AI without
validation. For production, consider adding a schema validation step (e.g.,
JSON Schema or Zod) before acting on AI output.

Part 2 - Automate Infrastructure Monitoring from Prometheus & Loki with AI-powered n8n workflows with AWX or Semaphore UI (Ansible) 46

Other Functional Considerations
Hostname interpretation: In the ‘Process Metrics’ node, the stripDomain
helper splits on . which will truncate hostnames like web1.internal to just web1 .
This is ok for as long as short hostnames are unique across the fleet.

Cache register: The advisory workflow uses alert-cache-advisory.json while the
remediation workflow uses alert-cache.json . This is on purpose to separate
them. If you want to re-run a workflow and have the previously flagged
hosts to be reported on again, simply remove the file by running a removal
command, such as sudo docker exec n8n rm /home/node/.n8n/alert-cache.json .

Alloy requirement (covered in Part 1): The process-level metrics
(top_cpu_processes , top_memory_processes) require the process-exporter / namedprocess-

exporter . We have covered this in Part 1 of this series - in case you skipped
to Part 2, then take it into account.

Execution timeout - In the past, n8n had a default timeout of 5 minutes,
which would not be enough for some workflows. During my testing of
version 2.6.3 and higher, a workflow ran even for several hours and was not
terminated,.

Limitations / Out of scope
No High Availability. This could be covered in the future if there is interest.
So if the very VM host that runs these docker containers go down, you will
not learn about issues. For this reason, it is always good to pair it up with a
separate host running uptime monitoring, such as UptimeKuma or Zabbix.

n8n supports PostgreSQL as a database backend and can run with
multiple workers. For the monitoring stack, it is possible to run
Prometheus in HA pair with Thanos or Mimir for long-term storage.

No rollback functionality? For those who are more cautious, esp. in
production use, before any changes are made to your infrastructure, you
could always run a ‘take a snapshot’ playbook first before changes like
reboots and disk space cleaning are implemented (unless those are bare
metal hosts). The playbooks suggested in this tutorial are non-destructive:

The disk cleaning job does not delete user data, only cache/temp/logs

Part 2 - Automate Infrastructure Monitoring from Prometheus & Loki with AI-powered n8n workflows with AWX or Semaphore UI (Ansible) 47

https://bachelor-tech.com/detailed-guides/part-1-ultimate-metrics-logs-monitoring-with-visualization-using-loki-prometheus-and-grafana/
https://docs.n8n.io/release-notes/#n8n263

The process termination job uses TERM signal to allow for graceful
shutdown

The reboot host job captures pre and post-reboot events logs to keep
an audit trail

Rate limiting & local LLMs - in case you run the workflow several times in
an hour and each time issues are found, you might incur additional charges
when using public models like Claude. You might wish to consider a self-
hosted LLMs like Qwen3-235B, Llama 4, Mistral Large 3, Phi-4 or even just
an RPI 5 with a 5Stack LLM-8850 HAT (as the link reveals, you can install it
with Qwen3:1.7b, Whisper and MeloTTS).

Distro Limitations: Since I wrote this tutorial with Debian/Ubuntu in mind,
other Linux distros (and UNIX) like RHEL and FreeBSD are not covered. You
will need to adapt these as per your needs.

Definition of exceptions: In the AI prompt, you could define a list of hosts
that you simply do not want to touch. This could be your Type 1
hypervisors.

What’s Next - Part 3
Fully Autonomous Workflow? In Part 3, I would like to look into providing
even more autonomous access for AI to make informed decisions on
infrastructure changes. We will need to employ some caution.

Docker container remediation? One big topic that has been intentionally
left out in Part 2 is the remediation of docker containers. For Docker
environments, a restart-container.ym l playbook paired with cAdvisor metrics
could extend this workflow to container-level remediation - something we
will explore in Part 3.

Support for other distros? In addition, based on your comments below, we
could look into automated jobs for other distros like FreeBSD and to pull
logs from other systems like OPNSense. Everything is possible!

Multi-step remediation approach? Lastly, what if more than one job needs
to be executed? For example, metrics reveal an issue and you want to run a
deeper diagnostic playbook before deciding on which action to take. A
multi-step remediation approach may be required for such situation. The
reason for not going there at this point is that I did not want to overload the

Part 2 - Automate Infrastructure Monitoring from Prometheus & Loki with AI-powered n8n workflows with AWX or Semaphore UI (Ansible) 48

https://www.aiefficiencyhub.com/2026/01/how-to-run-private-local-ai-guide-2026.html
https://www.aiefficiencyhub.com/2026/01/how-to-run-private-local-ai-guide-2026.html
https://www.youtube.com/watch?v=IuTD5OMaVVU

readers with overly complicated workflows before the concept of AI-
assisted remediation is properly laid out with the basic four templates.

Let me know what else you would like covered or what is missing in this series
from your perspective. You can very much influence on where will things go
next!

Questions for Claude in relation to the article above:

Hi, I have written a Part 2 article to a series about how to automate a self-
healing infrastructure workflow using Claude AI. Part 1 covered the deployment
of Prometheus, Loki and Grafana in Docker and in there I pushed an Alloy agent
service to the fleet with the required settings to gather metrics that include IO
pressure and top CPU/RAM processes. So that part is covered.

I would like you to read through the attached Part 2 of the tutorial and do the
following:

Check for factual errors, critique it.

Spot for things that would be good to add or are missing.

Check for grammar or semantic issues.

Consider what else to add in the Conclusion section to make it more
interesting to home lab admins. Also, consider real case usage in
production environments - how feasible it is?

Verify the attached YAML remediation templates (you can suggest
changes) and the same for the attached n8n workflow that puts it all
together (including the JavaScript code in some of the nodes such as
'Process Metrics' and others).

Part 2 - Automate Infrastructure Monitoring from Prometheus & Loki with AI-powered n8n workflows with AWX or Semaphore UI (Ansible) 49

Consider any 'plot holes' in the n8n workflow to see what could happen
that is not accounted for.

For the Ansible playbooks, please suggest the content for a
README.MD file.

I prepared the remediation workflow for Semaphore UI but never tested it,
as I use AWX in my environment. Could you confirm that it will work?

For each, please suggest how to handle what you found.

I plan to post this tutorial on my blog. You can see the Part 1 on this
link: https://bachelor-tech.com/detailed-guides/part-1-ultimate-metrics-logs-
monitoring-with-visualization-using-loki-prometheus-and-grafana/ (you would
need to click through each step to scan the text, but it is entirely optional).

Hi, I have written a Part 2 article to a series about how to automate a self-
healing infrastructure workflow using Claude AI. Part 1 covered the deployment
of Prometheus, Loki and Grafana in Docker and in there I pushed an Alloy agent
service to the fleet with the required settings to gather metrics that include IO
pressure and top CPU/RAM processes. So that part is covered.

I would like you to read through the attached Part 2 of the tutorial and do the
following:

Check for factual errors, critique it.

Spot for things that would be good to add or are missing.

Check for grammar or semantic issues.

Consider what else to add in the Conclusion section to make it more
interesting to home lab admins. Also, consider real case usage in
production environments - how feasible it is?

Verify the attached YAML remediation templates (you can suggest
changes) and the same for the attached n8n workflow that puts it all
together (including the JavaScript code in some of the nodes such as
'Process Metrics' and others).

Consider any 'plot holes' in the n8n workflow to see what could happen
that is not accounted for.

For the Ansible playbooks, please suggest the content for a
README.MD file.

Part 2 - Automate Infrastructure Monitoring from Prometheus & Loki with AI-powered n8n workflows with AWX or Semaphore UI (Ansible) 50

http://readme.md/
https://bachelor-tech.com/detailed-guides/part-1-ultimate-metrics-logs-monitoring-with-visualization-using-loki-prometheus-and-grafana/
https://bachelor-tech.com/detailed-guides/part-1-ultimate-metrics-logs-monitoring-with-visualization-using-loki-prometheus-and-grafana/
http://readme.md/

I prepared the (second) remediation workflow for Semaphore UI but never
tested it, as I use AWX in my environment. Could you confirm that it will
work?

For each, please suggest how to handle what you found.

I plan to post this tutorial on my blog. You can see the Part 1 on this
link: https://bachelor-tech.com/detailed-guides/part-1-ultimate-metrics-logs-
monitoring-with-visualization-using-loki-prometheus-and-grafana/ (you would
need to click through each step to scan the text, but it is entirely optional).

Now there are 41 files to attach - I am attaching the first batch out of 3. Please
pause until the upload is complete.

Part 2 - Automate Infrastructure Monitoring from Prometheus & Loki with AI-powered n8n workflows with AWX or Semaphore UI (Ansible) 51

https://bachelor-tech.com/detailed-guides/part-1-ultimate-metrics-logs-monitoring-with-visualization-using-loki-prometheus-and-grafana/
https://bachelor-tech.com/detailed-guides/part-1-ultimate-metrics-logs-monitoring-with-visualization-using-loki-prometheus-and-grafana/

