
Deploy Vaultwarden in multi-
site environment in HA
(Docker, OPNSense, Galera
cluster, Nginx)

Written
By

Jan Bachelor

Published
URL:

https://bachelor-tech.com/detailed-guides/deploy-
vaultwarden-in-multi-site-environment-in-ha-docker-
opnsense-galera-cluster-nginx/

Last
Updated

❇️ Table of Content

January 16, 2026 927 AM

Introduction
1. Vaultwarden or Bitwarden?

Pre-requisites
Topology
Software Versions at the time of write-up
Gotchas with Vaultwarden & Syncthing

2. Create a Vaultwarden DB + Install Dependencies
Create a DB on your cluster
Install dependencies + Vaultwarden itself
Configure Nginx with Vaultwarden

3. Configure OPNSense + HAProxy for Vaultwarden
Add your ‘real’ hosts
Set up a health monitor
Configure your back-end pool
Configure a condition and a rule on HAProxy to listen to

Deploy Vaultwarden in multi-site environment in HA (Docker, OPNSense, Galera cluster, Nginx) 1

https://bachelor-tech.com/detailed-guides/deploy-vaultwarden-in-multi-site-environment-in-ha-docker-opnsense-galera-cluster-nginx/
https://bachelor-tech.com/detailed-guides/deploy-vaultwarden-in-multi-site-environment-in-ha-docker-opnsense-galera-cluster-nginx/
https://bachelor-tech.com/detailed-guides/deploy-vaultwarden-in-multi-site-environment-in-ha-docker-opnsense-galera-cluster-nginx/
janba
Cross-Out

Introduction
Running a mission-critical website on a single server creates a significant risk,
as routine maintenance or unexpected hardware failures can take your service

Set up your public (front-end) service
4. Troubleshoot Vaultwarden Docker/Web UI service

Troubleshooting web UI reachability
Example issue no.1 - Web server not accepted by the DB server
Example issue no.2 - No Docker container running
Example issue no.3 - 401 Unauthorized" loops
First login

5. Set up Syncthing for Vaultwarden data sync
Troubleshooting Syncthing folder addition
Add Syncthing on other web nodes

6. Set up Monitoring for Vaultwarden’s Docker Container + Website using UptimeKuma
Monitor A. Site 3 - Website Uptime
Monitor B. Site 1+2 Docker Container Monitor
Monitor C. Site 1+2 Syncthing Monitor

7. Harden Vaultwarden with Fail2ban
Install fail2ban
Protect SSH on a custom port
Protect Vaultwarden’s docker container
Troubleshooting fail2ban for Vaultwarden on Docker
Ensure local + Cloudflare traffic does not get blocked

8. Bonus: Customize the 403 Forbidden page on Nginx
9. Migrate your data from Bitwarden to Vaultwarden

Migrating your Bitwarden data
Handling special items in Vaultwarden
Log into your Vaultwarden using Bitwarden browser plugin
Set up user/org policies
Invite other Vaultwarden members

10. Backups, Restoration & Additional Security Considerations
Backup & Recovery
Recovery Situations
Testing Your Backups
Updating Vaultwarden
Securing other components of your stack
Putting Vaultwarden behind a VPN
What else could go wrong?

Deploy Vaultwarden in multi-site environment in HA (Docker, OPNSense, Galera cluster, Nginx) 2

offline instantly. This tutorial guides you through transforming a standalone web
server into a resilient High Availability (HA) cluster using accessible open-
source tools.

We will utilize Proxmox to clone your existing environment and deploy
OPNsense with HAProxy to intelligently distribute traffic between multiple
nodes. To handle dynamic content, we solve the challenge of file
synchronization by implementing Syncthing, a decentralized peer-to-peer tool
that keeps folders like WordPress uploads identical across servers in real-time.

We will configure Syncthing on headless Linux instances, tunnel securely to its
GUI for management, and set up automated health monitoring using
UptimeKuma. By the end, you will have a robust architecture that can survive
individual server reboots without downtime, offering a simpler alternative to
complex enterprise-grade distributed file systems.

1. Vaultwarden or Bitwarden?
While Bitwarden offers a robust, enterprise-ready self-hosted option, it is
resource-intensive. The official Bitwarden server relies on a complex stack
of MSSQL (Microsoft SQL Server) and multiple .NET containers, often
requiring 2GB+ of RAM just to idle.

Vaultwarden is a lightweight rewrite of the Bitwarden API in Rust. It is fully
compatible with official Bitwarden apps (browser extensions, mobile,
desktop) but runs on a fraction of the resources (often <100MB RAM).

Bitwarden offers a free option for individuals. If you have a family or an
organization and want to share a collection of passwords, you would need
to go on the paid tier. The advantages include convenience (no
maintenance on your part) and no missing features.

The obvious pitfall with Vaultwarden is that if you deploy it yourself, you will
also need to handle the maintenance. We counter that by using docker
containers that can be updated very easily. What takes more effort is to
ensure your web and database clusters are up to date and secure as well,
which is beyond the scope of this tutorial. In addition, if Bitwarden
introduces some flashy new features, you may need to wait till the Rust
devs update them for Vaultwarden.

Pre-requisites

Deploy Vaultwarden in multi-site environment in HA (Docker, OPNSense, Galera cluster, Nginx) 3

A web server (or two) on site 1 + 2 running nginx on Debian 12 or newer.
Their set up is beyond the scope of this article - you can refer to my
previous article on How to configure High Availability for a Web Server
using Syncthing and HAProxy (on OPNSense).

A Galera cluster (MySQL) deployed in HA on your two sites, ideally with a
Galera witness on site 3 (all connected via WireGuard). Again, the set up is
beyond the scope of this article - you can complete them using previous
tutorials titled Deploy MariaDB Galera Cluster on Proxmox and Set up a
Galera Witness on Hetzner VPS using Terraform + Ansible (AWX)

OPNSense (or pfsense or similar) with an HAProxy module to act as a
reverse proxy + virtual IP interface for our DB cluster on site 1 and 2.
Previously, this was completed in a tutorial called OPNSense in HA with
CARP with dual WANs.

Topology
Site 1 (Main) - all connected to a UPS managed from an RPI

OPNSense in HA (192.168.8.254) - CARP 0 - see this guide to set it up.

OPNSense1 (192.168.8.1) - Proxmox host 1

OPNSense2 (192.168.8.2) - Proxmox host 2

Site-to-site VPN WireGuard) with the interface of 10.10.10.1/24

Web servers in HA - reachable via a shared back-end pool in HAProxy
within OPNSense

web1 (192.168.8.9) - Proxmox host 1

Syncthing from web1 to web2 & web1 to web3 - to sync user
data in near real-time

Connected to a local Gitea server - to update app data on
demand

web2 (192.168.8.10) - Proxmox host 2

Syncthing from web2 to web1 & web2 to web3 - to sync user
data in near real-time

Deploy Vaultwarden in multi-site environment in HA (Docker, OPNSense, Galera cluster, Nginx) 4

https://bachelor-tech.com/tutorials/how-to-create-high-availability-for-a-web-server-using-syncthing-and-haproxy/
https://bachelor-tech.com/tutorials/how-to-create-high-availability-for-a-web-server-using-syncthing-and-haproxy/
https://bachelor-tech.com/tutorials/how-to-create-high-availability-for-a-web-server-using-syncthing-and-haproxy/
https://bachelor-tech.com/detailed-guides/deploy-mariadb-galera-cluster-on-proxmox/
https://bachelor-tech.com/tutorials/set-up-galera-witness-on-hetzner-using-terraform-ansible-awx/
https://bachelor-tech.com/tutorials/set-up-galera-witness-on-hetzner-using-terraform-ansible-awx/
https://bachelor-tech.com/tutorials/set-up-galera-witness-on-hetzner-using-terraform-ansible-awx/
https://bachelor-tech.com/detailed-guides/opnsense-in-ha-with-carp-with-dual-wans/
https://bachelor-tech.com/detailed-guides/opnsense-in-ha-with-carp-with-dual-wans/
https://bachelor-tech.com/detailed-guides/opnsense-in-ha-with-carp-with-dual-wans/

Connected to a local Gitea server - to update app data on
demand

Database Cluster - MariaDB Galera cluster - reachable on virtual IP
192.168.8.70 configured in OPNSense

galera1-2 (192.168.8.71 + 72) - Proxmox host 1

galera3-4 (192.168.8.73 + 74) - Proxmox host 2

galera-template - a pre-prepared LXC template ready for easy
deployment in case a replacement is needed (can be automated
with AWX for deployment)

Gitea LXC (192.168.8.21) - to sync app data and deployment scripts +
config.xml for each OPNSense host.

Uptimekuma1 (192.168.8.60) - to monitor all Site 1 hosts’ uptime inc.
services like Syncthing

RPI (192.168.8.16)

Corosync for HA for the Proxmox cluster) - ensure a host is
reachable if one is down

Proxmox Backup Server with an added drive - for Site 1 + 2.

APCupsd with scripts for smooth graceful shutdown of Proxmox
hosts - see this tutorial for more information.

Can act as a local Galera witness before Site 3 is set up.

Site 2 (Online Backup)

OPNSense3 (192.168.6.1) - Proxmox host 3

Site-to-site VPN (WireGuard) with the interface of 10.10.10.2/24

Web3 (192.168.6.10) - Proxmox host 3

Syncthing from web3 to web1 & web3 to web2 - to sync user data in
near real-time

Connected to Site 1’s Gitea server - to update app data on demand

Galera4+5 (192.168.6.75 + 76) - Proxmox host 3

Deploy Vaultwarden in multi-site environment in HA (Docker, OPNSense, Galera cluster, Nginx) 5

https://bachelor-tech.com/tutorials/set-up-galera-witness-on-hetzner-using-terraform-ansible-awx/

Uptimekuma2 (192.168.6.60) - monitors Site 2 services inc. web2’s
Syncthing jobs.

Site 3 (Witness)

Galera witness VPS deployed automatically via AWX in Hetzner - see
this tutorial on how to achieve that.

Site-to-site VPN (WireGuard) with the interface of 10.10.10.3/24

Garb - daemon that does not hold data and provides HA if one site is
down (quorum voting as +1)

Uptimekuma3 - monitors uptime for websites that are provided by
either site (such as bachelor-tech.com)

Software Versions at the time of write-up
For the purpose of reproducibility, as a side note, you can find the versions that
I worked with:

OPNSense:

Core Version: 25.7.10 (commit: c2f076f30)

os-haproxy plugin: 4.6_1

os-acme plugin: 4.11

os-ddclient plugin: 1.28

os-git-backup: 1.1_1

Vaultwarden Docker Image: 1.35.2

Web servers

OS: Debian 12 (Bookworm, kernel 6.1.0-26-amd64)

nginx: 1.28.0

Docker Engine (client + server): 29.1.3

Syncthing: 2.0.12 (Hafnium Hornet)

Fail2ban (server + client): 1.0.2

Galera cluster:

Deploy Vaultwarden in multi-site environment in HA (Docker, OPNSense, Galera cluster, Nginx) 6

https://bachelor-tech.com/tutorials/set-up-galera-witness-on-hetzner-using-terraform-ansible-awx/
https://hub.docker.com/r/vaultwarden/server

OS: Debian 13 (Trixie, kernel 6.17.2-2-pve)

Maria DB Server: 11.8.3

Maria DB Client: 15.2

UptimeKuma: 2.0.0-beta.4

Gotchas with Vaultwarden & Syncthing
There are two specific limitations to be aware of during an Active-Active setup
for Vaultwarden:

Token Signing Keys: Users will get logged out if they hit web1 but their
token was signed by web2 or web3 using a different key. You must ensure
the RSA key files in the data directory are identical across all nodes.

We will handle that in this guide by using Syncthing to distribute the
RSA key between the web nodes.

WebSockets: Vaultwarden does not currently have a "message bus" (like
Redis) to broadcast WebSocket events between nodes. If a user updates a
password on web1 , a device connected to web2 or web3 won't get the live
update immediately. It will sync the next time the user manually refreshes or
performs an action. This is a minor inconvenience but acceptable for most.

Vaultwarden tables utilize Primary Keys, which is good (Galera requires
them). However, ensure your Galera nodes are not running in ENFORCING
mode for wsrep_drupal_282555_workaround or strict checking that might block
INSERT statements if they momentarily lack a PK. Most likely, this will not be
an issue.

2. Create a Vaultwarden DB + Install Dependencies
Now since the topology and the specifics of Vaultwarden have been covered,
let us move forward with the installation and set up. We will be setting it up on
Debian 13 (Trixie) - other versions will likely work in a very similar fashion.

Create a DB on your cluster
SSH into any of the Galera cluster node (as they will sync) and run the
following:

Deploy Vaultwarden in multi-site environment in HA (Docker, OPNSense, Galera cluster, Nginx) 7

Replace the ‘ your_secure_password ’ string with your own! It is recommended
to avoid using special characters for compatibility - the length is what
matters the most here! If you do use special chars, you will need to
escape them properly later on in the docker-compose.yml file for
Vaultwarden.

If you are not sure about the subnet required for the user’s privileges,
you can just use ‘ % ’ instead of specifying the IP range.

mysql -u root -p

CREATE DATABASE vaultwarden CHARACTER SET utf8mb4 COLLATE utf8
mb4_unicode_ci;
CREATE USER 'vaultwarden'@'192.168.%' IDENTIFIED BY 'your_secure_pas
sword';
GRANT ALL PRIVILEGES ON vaultwarden.* TO 'vaultwarden'@'192.168.%';
FLUSH PRIVILEGES;

Install dependencies + Vaultwarden itself
Take a snapshot of each web server before you start the process!

Install the following on EACH web node you have:

Update and install basic tools
sudo apt update && sudo apt install -y ca-certificates curl

Add Docker's official GPG key
sudo install -m 0755 -d /etc/apt/keyrings
sudo curl -fsSL https://download.docker.com/linux/debian/gpg -o /etc/apt/
keyrings/docker.asc
sudo chmod a+r /etc/apt/keyrings/docker.asc

Deploy Vaultwarden in multi-site environment in HA (Docker, OPNSense, Galera cluster, Nginx) 8

Add the repository
echo \
 "deb [arch=$(dpkg --print-architecture) signed-by=/etc/apt/keyrings/doc
ker.asc] https://download.docker.com/linux/debian \
 $(. /etc/os-release && echo "$VERSION_CODENAME") stable" | \
 sudo tee /etc/apt/sources.list.d/docker.list > /dev/null

Refresh apt & install Docker
sudo apt update
sudo apt install -y docker-ce docker-ce-cli containerd.io docker-buildx-plu
gin docker-compose-plugin

Enable Docker Systemd service (so containers start on boot)
sudo systemctl enable --now docker

Create a user, folder and a Docker Compose file:

Create the directory
sudo mkdir -p /opt/vaultwarden

Set permissions so your current user can edit files there
sudo chown $USER:$USER /opt/vaultwarden
cd /opt/vaultwarden

Create the Compose file
nano /opt/vaultwarden/docker-compose.yml

The compose.yml file:

Note that in my set up, I have a virtual IP set up using OPNSense that I
point the web application onto. If you do not have it set up yet, you can
check out this part of the tutorial titled Virtual IP Set Up on OPNSense
(you will then need a service such as HAProxy listening on that IP to
receive and forward requests to your Galera cluster nodes).

services:
 vaultwarden:

Deploy Vaultwarden in multi-site environment in HA (Docker, OPNSense, Galera cluster, Nginx) 9

https://bachelor-tech.com/detailed-guides/deploy-mariadb-galera-cluster-on-proxmox/configure-haproxy-for-your-galera-cluster/#Virtual_IP_Set_Up_on_OPNSense

 image: vaultwarden/server:latest
 container_name: vaultwarden
 restart: always
 ports:
 - "127.0.0.1:8000:80"
 environment:
 - DATABASE_URL=mysql://vaultwarden:yourpwd@1.2.3.4/vaultwarden
 - DOMAIN=https://vault.yourdomain.com
 - SIGNUPS_ALLOWED=false
 - INVITATIONS_ALLOWED=true
 - IP_HEADER=X-Real-IP
 - LOG_LEVEL=info
 - EXTENDED_LOGGING=true
 # --- SMTP Email Settings ---
 - SMTP_HOST=smtp.gmail.com # Replace with your provider's host
 - SMTP_FROM=vaultwarden@your-domain.tld
 - SMTP_FROM_NAME=Vaultwarden
 - SMTP_SECURITY=starttls # Options: starttls, force_tls, off
 - SMTP_PORT=587 # Usually 587 for starttls, 465 for force_tls
 - SMTP_USERNAME=your_email@gmail.com
 - SMTP_PASSWORD=your_app_password
 - SMTP_AUTH_MECHANISM="Plain" # This is safe if used with TLS
 logging:
 driver: "journald"
 options:
 tag: "{{.Name}}"
 volumes:
 # This creates a 'vw-data' sub-folder as a form of persistent storage
 - ./vw-data:/data

Run it:

cd /opt/vaultwarden

Sudo is needed to pull the image
sudo docker compose up -d

Deploy Vaultwarden in multi-site environment in HA (Docker, OPNSense, Galera cluster, Nginx) 10

You can check its status after creation by running sudo docker container ps -a .

💡 Once your docker-compose.yml file is launched and you make changes to
it, it is best to then re-create the container by running sudo docker compose
up -d --force-recreate

Configure Nginx with Vaultwarden
Depending on how your nginx instance is already configured, your set up
may look like something like this:

Ensure the path + port number match!

SSL offloading is handled by HAProxy/OPNSense, so Nginx here listens
on 8081. Ensure HAProxy passes the X-Forwarded-Proto header so
Vaultwarden knows it's secure.

sudo nano /etc/nginx/conf.d/vaultwarden.conf

server {
 # We listen on 80 because HAProxy handles the SSL/HTTPS before it get
s here.
 listen 8081;

 # Replace with your actual FQDN
 server_name vault.yourdomain.com;

Replace with OPNSense's actual IP to ensure fail2ban blocks the cor
rect users:
 set_real_ip_from 192.168.0.0/16;
 real_ip_header X-Forwarded-For;
 real_ip_recursive on;

Deploy Vaultwarden in multi-site environment in HA (Docker, OPNSense, Galera cluster, Nginx) 11

 # Allow large attachments (optional, but good for saving PDFs/Images in
vault)
 client_max_body_size 128M;

 location / {
 proxy_pass http://127.0.0.1:8000;

 # WebSocket support (used by /notifications/hub)
 proxy_http_version 1.1;
 proxy_set_header Upgrade $http_upgrade;
 proxy_set_header Connection "upgrade";

 # Pass headers so Vaultwarden knows the real IP of the user, not just
"127.0.0.1"
 proxy_set_header Host $host;
 proxy_set_header X-Real-IP $remote_addr;
 proxy_set_header X-Forwarded-For $proxy_add_x_forwarded_for;
 proxy_set_header X-Forwarded-Proto $scheme;
 }

To clarify the ports used (these remain internal and do not need firewall
rules):

Port 8081: What nginx listens on to receive traffic from HAProxy

Port 8000: The Vaultwarden application (web interface, API, and
WebSockets)

💡 Note: In Vaultwarden versions prior to 1.29.0, WebSockets required a
separate
port (3012). Modern versions serve WebSockets from the main application
port,
simplifying the configuration.

Check nginx config and reload it:

Confirm there is no typo in the syntax before reloading it
sudo nginx -t

Deploy Vaultwarden in multi-site environment in HA (Docker, OPNSense, Galera cluster, Nginx) 12

Reload nginx for the changes to take an effect
sudo systemctl reload nginx

Remember to complete the above on all web server nodes, although you
may wish to do the first one first and have HAProxy set up just with that one
node until you got it working fully.

3. Configure OPNSense + HAProxy for Vaultwarden
For true High Availability (ideally on each site or at least on the main site),
you should run your OPNSense in a master-backup configuration running
on separate hardware on the same site.

You would need to open a port for HTTPS communication and since your
OPNSense HA relies on having the web interface running on port 443, you
will need to open another port on HAProxy to receive web traffic on (I use
port 4443 that the ISP-provided router changes from 443 to 4443). See
here for more details on which ports to open for web traffic to work on
OPNSense, followed up by NAT rules.

Create a DNS record for your vault.yourdomain.tld record pointing to the public
IP of your OPNSense - you can follow these steps to set up dynamic DNS
with Cloudflare.

If you prefer a more secure set up, you do not actually need to expose a
public DNS record, you can simply set one up on your network using
tools such as Unbound DNS.

Before setting up HAProxy, you should also set up an SSL certificate using
the ACME plugin in OPNSense.

Add your ‘real’ hosts
In case you do not have it set up yet, apart from defining your web hosts (under
the ‘Real Servers’ tab) with the local port (I’m using 8081), we should check the
health of each web host.

Deploy Vaultwarden in multi-site environment in HA (Docker, OPNSense, Galera cluster, Nginx) 13

https://bachelor-tech.com/detailed-guides/opnsense-in-ha-with-carp-with-dual-wans/
https://bachelor-tech.com/tutorials/iredmail-mail-server-as-proxmox-vm-with-opnsense/firewall-ports-to-open-on-your-firewall-opnsense/
https://bachelor-tech.com/tutorials/iredmail-mail-server-as-proxmox-vm-with-opnsense/fiirewall-set-up-nat-rules-opnsense/
https://bachelor-tech.com/tutorials/iredmail-mail-server-as-proxmox-vm-with-opnsense/dynamic-dns-for-our-mail-dns-record-cloudflare-with-opnsense/
https://bachelor-tech.com/tutorials/iredmail-mail-server-as-proxmox-vm-with-opnsense/dynamic-dns-for-our-mail-dns-record-cloudflare-with-opnsense/
https://bachelor-tech.com/tutorials/iredmail-mail-server-as-proxmox-vm-with-opnsense/dynamic-dns-for-our-mail-dns-record-cloudflare-with-opnsense/
https://bachelor-tech.com/tutorials/iredmail-mail-server-as-proxmox-vm-with-opnsense/get-ssl-certificate-on-opnsense-for-web-services-cloudflare/
https://bachelor-tech.com/tutorials/iredmail-mail-server-as-proxmox-vm-with-opnsense/get-ssl-certificate-on-opnsense-for-web-services-cloudflare/
https://bachelor-tech.com/tutorials/iredmail-mail-server-as-proxmox-vm-with-opnsense/get-ssl-certificate-on-opnsense-for-web-services-cloudflare/

In OPNSense, go to Services → HAPRoxy → Settings. Then move to the
other menu and click on Real Servers → Real Servers. Add a new one for
each of your web servers:

Name: web1_nginx

Type: static

IP: your actual IP

Port: your chosen port configured on nginx, e.g. 8081

No SSL config here!

Set up a health monitor
We should also ensure that there is a health check in place for the web servers.

Go to Rules & Checks → Health Monitors. Add a new monitor:

Name: web_server_cluster_check (or whatever you prefer)

Check type: HTTP (default)

SSL preferences: use server settings (default)

Check interval: 15-90s (you may get some false positives if too
aggressive)

Port to check: 8081

Deploy Vaultwarden in multi-site environment in HA (Docker, OPNSense, Galera cluster, Nginx) 14

HTTP method: HEAD

Request URI: /

HTTP version: HTTP/1.1

HTTP host: yourdomain.tld

Configure your back-end pool
You may already have a back-end pool configured for your existing web
servers, yet we will need to create another pool with the same real hosts in it,
since different parameters will need to be set up for Vaultwarden.

💡 The challenge with the default session rate period is that it is typically
about 10 seconds long as well as no pass-through option is defined,
which would result in the client having to re-establish connection with
the server (users would see having a ‘Connecting…’ spinning wheel
appear regularly). While for example PHP-based applications receive
a payload and close the connection after responding, for web
sockets, we want the session to remain active.

Deploy Vaultwarden in multi-site environment in HA (Docker, OPNSense, Galera cluster, Nginx) 15

Create a new back-end pool as follows (enable the advanced options):

Name: backend_vaultwarden_nginx

Mode: HTTP (Layer 7)

Balancing Algorithm: Round Robin

Random Draws: 2 (entirely up to you)

Proxy Protocol: none

Servers: add your ‘real’ servers here

…

Enable health checking: Ticked

Health monitor: web_server_cluster_check (previously defined in the health
check section)

Proxy Protocol: none

Servers: add your web servers

…

X-Forwarded-For header: Ticked

Persistence Type: Cookie-based persistence

Cookie Handling: Insert new cookie

Cookie name: SRVCOOKIE (or another name as you desire)

Strip Quotes: Ticked (Default)

Expiration Time: 1h (match your tunnel timeout)

…

Connection Timeout: 5s (fail-over fast if the server is not responding)

Check Timeout: 5s (fail fast if health check fails)

Server Timeout: 3600s (allows the server to keep the pipe open)

Retries: 3 (default)

Option pass-through: timeout tunnel 3600s (tells HAProxy that it is a tunnel)

You can leave the rest as default unless you have other specifics in
your set up.

Deploy Vaultwarden in multi-site environment in HA (Docker, OPNSense, Galera cluster, Nginx) 16

Configure a condition and a rule on HAProxy to listen to
While still under HAProxy’s settings, go to Rules & Checks → Conditions and
add a new condition:

Name: condition-vault-your-domain-tld

Condition type: Host matches

Host string: vault.yourdomain.tld

And then still under Rules & Checks, go to Rules and add a new rule:

Name: vault-your-domain-tld_match (do not use spaces)

The most crucial part of the back-end pool set up - use a new pool with the existing web
servers to configure cookie persistence + x-forwarded-for header + 1h expiration time (then

scroll below for the other options mentioned above).

Deploy Vaultwarden in multi-site environment in HA (Docker, OPNSense, Galera cluster, Nginx) 17

Test type: IF

Select conditions: condition-your-domain-tld (find your own)

Execute function: Use specified Backend Pool

Use backend pool: backend_vaultwarden_nginx (as defined previously)

Set up your public (front-end) service
Go to Virtual Services → Public Services. If you already have one defined for
HTTPS, then simply add the rule at the end, test & apply the syntax and you are
done.

If you have not set up HTTPS, then create a new one. The key here is to
firstly have firewall rules set up to forward traffic to ‘This host’ on a port that
HAProxy is listening to (must be different from the web interface that you
use to access OPNSense!) and then in the ‘Public Service’ window, tick the
‘ SSL offloading ’ box to ensure that traffic is decrypted on your LAN. You would
need to use the ACME certificate created earlier.

Deploy Vaultwarden in multi-site environment in HA (Docker, OPNSense, Galera cluster, Nginx) 18

💡 Ensure that you follow these steps on all of your sites to have the
same config and can thus expect consistent behavior.

4. Troubleshoot Vaultwarden Docker/Web UI service
Let’s try accessing the web UI. Try accessing the Vaultwarden interface on
https://vault.yourdomain.com .

Troubleshooting web UI reachability
In case the web UI is not coming up, we need to determine where the traffic got
stuck. Here are the layers:

DNS - e.g. CloudFlare - is your DNS record set up? Does it point to the
correct IP address?

OPNSense - do you have a firewall + NAT rule set up for forwarding traffic to
a port that HAPRoxy is listening on?

HAProxy - is your public (front-end) service on and listening on the desired
port? Have you attached your SSL certificate for decrypting traffic? Is your
back-end pool forwarding traffic to the right host? Is your ‘real’ host
configure on the right port?

Deploy Vaultwarden in multi-site environment in HA (Docker, OPNSense, Galera cluster, Nginx) 19

https://vault.yourdomain.com/

Nginx on the VM - is nginx on and listening on the right port? Is the syntax
of your virtual host for forwarding ok?

Docker - is the docker instance up? What do the logs say?

Galera DB Cluster - is it reachable for the web servers? Is the virtual IP
operational? Is the DB up, esp. if you are reaching it on a virtual IP via
OPNSense / pfSense?

Example issue no.1 - Web server not accepted by the DB server
The example below shows that the Docker instance is running but spent the
last two hours in a crash loop due to incorrect DB details:

You may notice the IP 192.168.8.1 that points to the OPNSense host from
which it is forwarded. This is because the Galera cluster is reachable on a
virtual IP (192.168.8.70) provided by OPNSense. Such behavior is normal
and expected.

The main issue that I simulated here was that the user was defined for the
wrong subnet - after dropping the user and re-creating it with the correct
GRANT privileges fixed the issue.

Example issue no.2 - No Docker container running
Let’s say you set up just one web server VM and were able to reach the web UI
and then later, it stopped loading. You may wish you double check that the
docker container is still up.

sudo docker container ps -a

Deploy Vaultwarden in multi-site environment in HA (Docker, OPNSense, Galera cluster, Nginx) 20

To fix it, go to the folder where your container is located and start it. Ensure
that you set up Docker to start on boot.

cd /opt/vaultwarden
sudo docker compose up -d
sudo systemctl enable docker

Example issue no.3 - 401 Unauthorized" loops
If you log in successfully but are immediately logged out when refreshing or
performing an action, your nodes likely have different signing keys.

The Cause: Vaultwarden generates RSA key pair files in /data on first
startup. If web1 generated its own keys and web2 generated different ones,
a login token signed by web1 will be rejected by web2 .

The Fix: Ensure Syncthing is successfully syncing the rsa_key.pem ,
rsa_key.pub.pem , and rsa_key.der files. You may need to manually copy the keys
from the "primary" node to the others once to establish a baseline, then let
Syncthing handle future updates.

First login
Your first step in the Web UI would be to create your account.

Since we set SIGNUPS_ALLOWED=false in the config, you will need to temporarily
change that to true in docker-compose.yml , run docker compose up -d to apply, create
your accounts, and then flip it back to false and restart again. This is
intentional as a matter of exercising how you can easily tweak settings with
Docker Compose, esp. when applying updates in the future.

5. Set up Syncthing for Vaultwarden data sync
To ensure that the uploaded data stay consistent across multiple web servers,
we will employ Syncthing, which I already use on my web servers. If you would

Deploy Vaultwarden in multi-site environment in HA (Docker, OPNSense, Galera cluster, Nginx) 21

like some help with deploying it, check out my previous tutorial on How to
Configure HA for Web Servers.

The permissions depend on which user runs the Syncthing service. In my
case, this is www-data . We will need to ensure that this user has access to
Docker for monitoring purposes:

Stop the container briefly to ensure the folder is free:
cd /opt/vaultwarden
sudo docker compose down

Grant the 'www-data' user full Read/Write access to the docker volume
using ACLs (Access Control Lists). This persists even if Docker recreates
files.
sudo setfacl -R -m u:www-data:rwx /opt/vaultwarden/vw-data
sudo setfacl -d -m u:www-data:rwx /opt/vaultwarden/vw-data

Start the container again (in a detached mode to free up the shell):
sudo docker compose up -d

Assuming you have Syncthing already deployed, add a new folder on web1:

General tab:

Label: Vaultwarden (web1)

Path: /opt/vaultwarden/vw-data

Sharing tab → if you already have your other Syncthing web servers
defined, then tick the boxes.

File versioning tab→ It is recommended to set up ‘Trash can versioning’
for 30 days+.

Skip to the Advanced tab → Check [x] Ignore Permissions (Docker
manages the ownership, Syncthing just moves the data bits).

Go back to the Ignore Patterns tab: (tick the box and once you
complete the other tabs and go forward, copy paste this list):

icon_cache/
tmp/

Deploy Vaultwarden in multi-site environment in HA (Docker, OPNSense, Galera cluster, Nginx) 22

https://bachelor-tech.com/tutorials/how-to-create-high-availability-for-a-web-server-using-syncthing-and-haproxy/
https://bachelor-tech.com/tutorials/how-to-create-high-availability-for-a-web-server-using-syncthing-and-haproxy/
https://bachelor-tech.com/tutorials/how-to-create-high-availability-for-a-web-server-using-syncthing-and-haproxy/

temp/
*.sqlite3
*.sqlite3-wal
*.sqlite3-shm
*.log

Deploy Vaultwarden in multi-site environment in HA (Docker, OPNSense, Galera cluster, Nginx) 23

Troubleshooting Syncthing folder addition
In case you add the sync job and immediately get a permission error like
the one below, it means your permissions on the /opt/vaultwarden folder are not
correct:

While in my case, the user is www-data, in your case, it is likely different.
How can you find out? Let’s take a look:

 # List all running processes, filter 'syncthing' and filter out the command it
self:
 sudo ps aux | grep syncthing | grep -v grep

Then adjust the ‘ sudo setfacl -R ’ and ‘sudo setfacl -d ’ commands above
accordingly.

For additional troubleshooting scenarios, you can check my previous guide
for Syncthing that includes data loss situations and recovery options.

Add Syncthing on other web nodes

Deploy Vaultwarden in multi-site environment in HA (Docker, OPNSense, Galera cluster, Nginx) 24

https://bachelor-tech.com/tutorials/how-to-create-high-availability-for-a-web-server-using-syncthing-and-haproxy/
https://bachelor-tech.com/tutorials/how-to-create-high-availability-for-a-web-server-using-syncthing-and-haproxy/
https://bachelor-tech.com/tutorials/how-to-create-high-availability-for-a-web-server-using-syncthing-and-haproxy/

SSH into your other web server nodes and set up the file permissions
accordingly as we have done at the beginning of this Step.

Open Syncthing on each of your other web nodes and accept the invitation:

Set up the name, path, trash can, ignore permissions in the Advanced tab
and then set up the file/folder patterns to be ignored, as we have done
previously.

6. Set up Monitoring for Vaultwarden’s Docker
Container + Website using UptimeKuma

There are three types of monitors that would be good to set up. If you only
have one site or do not have your ‘witness’ site set up yet, then you can have all
these checks running of just one UptimeKuma instance.

Monitor A. Site 3 - Website Uptime
On Site 3 (VPS - witness site), you can monitor the service as a whole (e.g.
does the website load regardless of which site it is being loaded from?).

Monitor Type: HTTP(s)

Friendly name: Vaultwarden or similar

URL: Your actual URL

Heartbeat: 30-600 seconds (1 to 10 minutes)

Retries: 1-3

Heartbeat Retry: a small amount, such as 30-60 seconds

Deploy Vaultwarden in multi-site environment in HA (Docker, OPNSense, Galera cluster, Nginx) 25

Monitor B. Site 1+2 Docker Container Monitor
For UptimeKuma to see the container, we will need to deploy a Socket Proxy
container. The idea is to use the proxy as a ‘gatekeeper’ that provides read-
only access to UptimeKuma on a specific port. We will need to apply this on
each web server node.

Create a new folder and a compose file:

Create a directory for the proxy
sudo mkdir -p /opt/socket-proxy-container

Go into that directory
cd /opt/socket-proxy-container

Create the compose file
sudo nano docker-compose.yaml

Enter the following:

services:
 docker-socket-proxy:
 image: tecnativa/docker-socket-proxy
 container_name: docker-socket-proxy

Deploy Vaultwarden in multi-site environment in HA (Docker, OPNSense, Galera cluster, Nginx) 26

 restart: unless-stopped
 # High privilege is required to access the raw docker socket
 privileged: true
 ports:
 - "2375:2375"
 volumes:
 # We give it access to the host's docker socket (read-only)
 - /var/run/docker.sock:/var/run/docker.sock:ro
 environment:
 # ENABLE specific read-only permissions
 - CONTAINERS=1 # Allows listing and checking container status
 - INFO=1 # Allows checking general docker info (optional)
 # BLOCK write permissions (security)
 - POST=0 # Blocks any commands that change state (restart/kill/cre
ate)

💡 Security Note: The socket proxy exposes read-only Docker API access on
port 2375.
In a homelab environment on a trusted LAN, this is generally acceptable. For
stricter
security, bind to a specific IP (192.168.8.9:2375:2375) or implement firewall rules
to allow only your UptimeKuma host on port 2375 . The most secure method
would be to bind it to localhost only and use SSH tunneling, instead.

Then start the container:

cd /opt/socket-proxy-container
sudo docker compose up -d

Check that it is running together with the Vaultwarden container:
sudo docker ps -a

On Site1/Site2 UptimeKuma, add a new monitor:

Monitor Type: Docker Container

Friendly name: Web1 - Docker Monitor - Vaultwarden

Deploy Vaultwarden in multi-site environment in HA (Docker, OPNSense, Galera cluster, Nginx) 27

Container name: vaultwarden (as per how it’s shown when you run docker

container ps -a on your web server.

Docker host - add a new one:

Friendly name: Web1 Docker Host

Connection type: TCP / HTTP

Docker Daemon: tcp://192.168.8.9:2375 (use your local IP with port 2375)

The overall monitor for web1 may look like this - remember to repeat this for
each web server:

Deploy Vaultwarden in multi-site environment in HA (Docker, OPNSense, Galera cluster, Nginx) 28

Monitor C. Site 1+2 Syncthing Monitor
The other thing that could stop working over time is Syncthing itself. We can
leverage Syncthing’s API for that and push information regularly from each web
server into UptimeKuma as a passive ‘push’ monitor.

Since I have described this method already in my recent guide, please
follow the steps from the the Syncthing Web HA tutorial.

You will get notified whenever ANY of the sync jobs are down or even
paused, as per your config settings.

7. Harden Vaultwarden with Fail2ban
On the VM that runs docker with our Vaultwarden container, we should install
fail2ban and secure the docker container. In case you do not have it set up
already, you can also secure SSH and your other sites.

Deploy Vaultwarden in multi-site environment in HA (Docker, OPNSense, Galera cluster, Nginx) 29

https://bachelor-tech.com/tutorials/how-to-create-high-availability-for-a-web-server-using-syncthing-and-haproxy/6-monitor-syncthing-jobs-with-uptimekuma/

Install fail2ban

1. Install Fail2ban
sudo apt update
sudo apt install fail2ban -y

2. Create a local configuration file (never edit jail.conf directly)
sudo cp /etc/fail2ban/jail.conf /etc/fail2ban/jail.local

Protect SSH on a custom port
In this case, SSH port is set to a custom port 2222 under /etc/ssh/sshd_config .

sudo nano /etc/fail2ban/jail.local

Un-commment these:
ignoreself = true

Add your own IP range (oneself + LAN + docker subnet)
ignoreip = 127.0.0.1/8 ::1 192.168.0.0/16 172.20.0.0/16

Comment out
ignorecommand =

Find an existing section called [sshd] and modify it as follows:

[sshd]
enabled = true
port = 2222
mode = aggressive
The more modern method instead of reading text files
backend = systemd
maxretry = 3
bantime = 1h

If you have not started the fail2ban client yet, run sudo fail2ban-client start .
Otherwise run sudo fail2ban-client reload for the changes above to kick in.

Deploy Vaultwarden in multi-site environment in HA (Docker, OPNSense, Galera cluster, Nginx) 30

Protect Vaultwarden’s docker container
In your docker-compose.yml file, ensure that you have the following
parameters set:

Ensure these three are somewhere in your 'environment':
environment:
 - LOG_FILE=/data/vaultwarden.log
 - LOG_LEVEL=info
 - EXTENDED_LOGGING=true

After changing the values below, run docker compose up -d to apply changes.

Let’s create a config that instructs fail2ban on what a failed login to
Vaultwarden looks like:

sudo nano /etc/fail2ban/filter.d/vaultwarden.conf

[Definition]
Matches "Admin login attempt failed" and "Invalid password for user"
failregex = .*Username or password is incorrect.*IP: <HOST>

We will need to define a deny action:

sudo nano /etc/fail2ban/action.d/nginx-deny.conf

[Definition]
actionstart =
actionstop =
actioncheck =
actionban = printf "deny <ip>;\n" >> /etc/nginx/blocklist.conf; systemctl rel
oad nginx
actionunban = sed -i "/deny <ip>;/d" /etc/nginx/blocklist.conf; systemctl re
load nginx

This path does not yet exist, let’s create it and set correct permissions for it:

sudo touch /etc/nginx/blocklist.conf

Deploy Vaultwarden in multi-site environment in HA (Docker, OPNSense, Galera cluster, Nginx) 31

sudo chmod 664 /etc/nginx/blocklist.conf

Then we should configure nginx’s config to read from it:

sudo nano /etc/nginx/conf.d/vaultwarden.conf

Block Banned IPs from fail2ban
include /etc/nginx/blocklist.conf;

Now we can finally add a new jail for Vaultwarden.

sudo nano /etc/fail2ban/jail.local

[vaultwarden]
enabled = true
Read logs directly from Docker
backend = systemd
Which container to watch
journalmatch = CONTAINER_NAME=vaultwarden
The attacker's port, not the internal port
port = 80,443,8081
filter = vaultwarden
The 'chain=DOCKER-USER' blocks the IP before Docker forwards it
action = nginx-deny
maxretry = 3
bantime = 300m # 5min
findtime = 300m # 5 min

Reload the fail2ban service - sudo fail2ban-client reload .

Then let’s run a real test: Attempt some failed login attempts from your
phone while on mobile network. Attempt some bad logins and refresh the
page. You should see your custom 403 page. Then check: sudo fail2ban-client

status vaultwarden . Then you can remove your banned IP by running sudo fail2ban-

client set vaultwarden unbanip 1.2.3.4 on the affected web server.

Troubleshooting fail2ban for Vaultwarden on Docker

Deploy Vaultwarden in multi-site environment in HA (Docker, OPNSense, Galera cluster, Nginx) 32

Ensure that the log is seeing repeated failed login attempts: sudo docker logs --
tail 20 vaultwarden

Compare the errors with the filter we created earlier - check sudo nano

/etc/fail2ban/filter.d/vaultwarden.conf .

In case you make modifications, restart the fail2ban service with sudo

fail2ban-client restart .

Run a dry-run using sudo fail2ban-regex systemd-journal /etc/fail2ban/filter.d/vaultwarden.conf

Is the count increasing but the connection with the device is not being
blocked?

Ensure that in your nginx config, you have this line included: include

/etc/nginx/blocklist.conf; , as otherwise, whatever is there to be blocked will be
ignored.

Confirm that your nginx-deny config exists, such as by running sudo nano

/etc/fail2ban/action.d/nginx-deny.conf .

Ensure local + Cloudflare traffic does not get blocked
If you are using Cloudflare or another proxy-like traffic management that
provides you with CDN and traffic filtering and an attacker tries to log into your
instance of Vaultwarden, nginx will end up blocking the IP address of the proxy
server from Cloudflare rather than their actual one. Such behavior is
undesirable, as it would then block legitimate traffic coming from the proxy to
your nginx server.

The solution is to whitelist the local and Cloudflare servers as shown on their
website. Yet the list changes (not often but from time to time) and it would be
tedious to keep it up to date manually. So let’s automate it!

Create a folder and script:

sudo mkdir /opt/cloudflare-proxies
sudo nano /opt/cloudflare-proxies/update-cloudflare-ips.sh

Deploy Vaultwarden in multi-site environment in HA (Docker, OPNSense, Galera cluster, Nginx) 33

https://www.cloudflare.com/ips/

#!/bin/bash

Download Cloudflare IPs
echo "# Cloudflare IPs - Auto Updated" > /etc/nginx/snippets/trusted-proxi
es.conf

Internal IPs - modify this to reflect your local subnet
echo "set_real_ip_from 192.168.0.0/16;" >> /etc/nginx/snippets/trusted-pro
xies.conf

IPv4
for ip in $(curl -s https://www.cloudflare.com/ips-v4); do
 echo "set_real_ip_from $ip;" >> /etc/nginx/snippets/trusted-proxies.co
nf
done

IPv6
for ip in $(curl -s https://www.cloudflare.com/ips-v6); do
 echo "set_real_ip_from $ip;" >> /etc/nginx/snippets/trusted-proxies.co
nf
done

Headers
echo "real_ip_header X-Forwarded-For;" >> /etc/nginx/snippets/trusted-pr
oxies.conf
echo "real_ip_recursive on;" >> /etc/nginx/snippets/trusted-proxies.conf

Reload Nginx as part of the script
sudo systemctl reload nginx

Run this script to verify it works as expected, then make it executable:

Run it
sudo bash /opt/cloudflare-proxies/update-cloudflare-ips.sh

You should see the IPs from the script in there
cat /etc/nginx/snippets/trusted-proxies.conf

Deploy Vaultwarden in multi-site environment in HA (Docker, OPNSense, Galera cluster, Nginx) 34

Make the script executable
sudo chmod +x /opt/cloudflare-proxies/update-cloudflare-ips.sh

Add it to run weekly via a cron job
sudo crontab -e

Add the following entry in there
0 4 * * 1 /bin/bash /opt/cloudflare-proxies/update-cloudflare-ips.sh

Add it into your virtual host on nginx:

sudo nano /etc/nginx/conf.d/vaultwarden.conf
 # Add the text below under the server { directive:

Whitelist Cloudflare proxies & internal subnet:
include /etc/nginx/snippets/trusted-proxies.conf;

Double check the syntax and reload nginx:

sudo nginx -t
sudo systemctl reload nginx

8. Bonus: Customize the 403 Forbidden page on
Nginx
While you might have a custom page on your reverse proxy side for when your
nodes are down, you may not have one for nginx. Let’s create it.

Create a custom snippet configuration file that we will then include with our
nginx config:

sudo nano /etc/nginx/snippets/custom-error-403.conf

Deploy Vaultwarden in multi-site environment in HA (Docker, OPNSense, Galera cluster, Nginx) 35

 error_page 403 /custom-403.html;
 location = /custom-403.html {
 allow all;
 root /var/www/html/;
 internal;
 sub_filter 'SERVER_ID' $hostname; # Replace placeholder with h
ostname
 sub_filter_once on;
 }

In the custom 403 error file, we point to the /var/www/html folder, which is
typical for Ubuntu and Debian installations. Some other flavors may use
/usr/share/nginx/html . The choice is yours :)

Then let’s create the actual file:

sudo nano /var/www/html/custom-403.html

The template I downloaded from this source - kudos to dr5hn.

<!DOCTYPE html>
<html lang="en">

<head>
 <meta charset="UTF-8">
 <meta name="viewport" content="width=device-width, initial-scale=1.
0">
 <title>403 Forbidden</title>
 <style>
 @import url("https://fonts.googleapis.com/css?family=Press+Start+2
P");

 html,
 body {
 width: 100%;
 height: 100%;
 margin: 0;

Deploy Vaultwarden in multi-site environment in HA (Docker, OPNSense, Galera cluster, Nginx) 36

https://github.com/dr5hn/403/blob/master/index.html

 }

 * {
 font-family: 'Press Start 2P', cursive;
 box-sizing: border-box;
 }

 #app {
 padding: 1rem;
 background: black;
 display: flex;
 height: 100%;
 justify-content: center;
 align-items: center;
 color: #54FE55;
 text-shadow: 0px 0px 10px;
 font-size: 6rem;
 flex-direction: column;
 }
 #app .txt {
 font-size: 1.8rem;
 text-align: center; /* This centers the text content */
 /* Removed justify-content and align-items as they don't apply here
*/
 }
 @keyframes blink {
 0% {
 opacity: 0;
 }

 49% {
 opacity: 0;
 }

 50% {
 opacity: 1;
 }

Deploy Vaultwarden in multi-site environment in HA (Docker, OPNSense, Galera cluster, Nginx) 37

 100% {
 opacity: 1;
 }
 }

 .blink {
 animation-name: blink;
 animation-duration: 1s;
 animation-iteration-count: infinite;
 }
 </style>
</head>

<body>
 <div id="app">
 <div>403</div>
 <div class="txt"> Blocked by fail2ban (SERVER_ID)<span class="blin
k">_ </div>
 </div>
</body>

</html>

Ensure that the html file is accessible to the user that executes nginx - in
my case, this was www-data :

sudo chown www-data:www-data /var/www/html/custom-403.html

Now you can edit any of the sites where you would like to apply this config
(such as in /etc/nginx/conf.d/vaultwarden.conf) and add a snippet in there:

sudo nano /etc/nginx/conf.d/vaultwarden.conf

Find the server directive and add the following:
include /etc/nginx/snippets/custom-error-403.conf;

For completeness, here is the full Nginx Vaultwarden config file:

Deploy Vaultwarden in multi-site environment in HA (Docker, OPNSense, Galera cluster, Nginx) 38

server {
 # We listen on 80 because HAProxy handles the SSL/HTTPS before it get
s here.
 listen 8081;

 # Replace with your actual FQDN
 server_name vault.yourdomain.tld;

 # Handled below by the whitelisting script already - do not duplicate!
 # Replace OPNSense's IP with the actual one to block the right users wit
h fail2ban:
 # set_real_ip_from 192.168.0.0/16; real_ip_header X-Forwarded-For; real_i
p_recursive on;

 # Whitelist Cloudflare proxies & internal subnet:
 include /etc/nginx/snippets/trusted-proxies.conf;

 # Find the server directive and add the following:
 include /etc/nginx/snippets/custom-error-403.conf;

 # Block Banned IPs from fail2ban
 include /etc/nginx/blocklist.conf;

 # Allow large attachments (optional, but good for saving PDFs/Images in
vault)
 client_max_body_size 128M;

 location / {
 proxy_pass http://127.0.0.1:8000;

 # WebSocket support (used by /notifications/hub)
 proxy_http_version 1.1;
 proxy_set_header Upgrade $http_upgrade;
 proxy_set_header Connection "upgrade";

 # Pass headers so Vaultwarden knows the real IP of the user, not just
"127.0.0.1"
 proxy_set_header Host $host;

Deploy Vaultwarden in multi-site environment in HA (Docker, OPNSense, Galera cluster, Nginx) 39

 proxy_set_header X-Real-IP $remote_addr;
 proxy_set_header X-Forwarded-For $proxy_add_x_forwarded_for;
 proxy_set_header X-Forwarded-Proto $scheme;
 }
}

Then remember to reload the nginx service

sudo nginx -t
sudo systemctl reload nginx

Run a test. In my case (zoomed in a bit), it looks like this - while indicating
which web server blocked it. For production use, you may wish to modify it.

As mentioned before, if you have more nginx servers that you spread the load
amongst, you would need to apply these steps on each of them.

9. Migrate your data from Bitwarden to Vaultwarden
Congratulations, the hardest part is done! Your infrastructure is in place
including detailed monitoring on a granular level. Let’s migrate your existing
data from Bitwarden. How can you move them over?

Migrating your Bitwarden data
Each user (you, your spouse, kids, etc.) imports their own private items.

Deploy Vaultwarden in multi-site environment in HA (Docker, OPNSense, Galera cluster, Nginx) 40

Export: Log in to your existing Bitwarden Web Vault.

Go to Tools > Export Vault.

Select format .json (Encrypted) if you know how to decrypt it, or .json
(Plaintext). Warning: Plaintext is readable, handle with care. You can
import and encrypted file just fine.

Import: Log in to your new Vaultwarden instance.

Create your user account (ensure SIGNUPS_ALLOWED=true in the docker-

compose.yml file at least at the beginning for your own account, the others
you can invite).

Go to Tools > Import Data.

Select Bitwarden (json).

Paste the content or upload the file. If you are using the recommended
encrypted .json file, you will be prompted for a password.

Deploy Vaultwarden in multi-site environment in HA (Docker, OPNSense, Galera cluster, Nginx) 41

Give it some time without refreshing the page for the credentials to
import.

You will then be greeted with a confirmation that the import has
finished.

💡 Moving an Organization (or a Family org) is done in the same way as
the personal vault, you just need to export them and import them
separately. Collections are re-created automatically during the import,
you do not need to create them before the import.

Deploy Vaultwarden in multi-site environment in HA (Docker, OPNSense, Galera cluster, Nginx) 42

Handling special items in Vaultwarden
SSH Keys are stored as standard "Items" in the database (similar to Logins
or Cards). They will be included in the JSON export and should appear in
Vaultwarden automatically.

Attachments - standard JSON exports do not contain file attachments
(images, PDFs, keys attached as files). You must move these manually.
While a .zip export that includes attachments is available in Bitwarden ,
importing this into a self-hosted Organization often fails or isn't fully
supported by the importer yet. Manual is the safest bet for integrity.

Sends (temporary links) - these cannot be exported. If you have active
Sends, you will need to manually recreate them in the new instance.

Log into your Vaultwarden using Bitwarden browser plugin
If, like many other users, you use the browser plugin for Bitwarden, you can
also use it for Vaultwarden.

Simply log out your Bitwarden account and, as shown below, click on the
‘Accessing’ option and choose ‘self-hosted’.

Deploy Vaultwarden in multi-site environment in HA (Docker, OPNSense, Galera cluster, Nginx) 43

Enter the URL of your instance.

Deploy Vaultwarden in multi-site environment in HA (Docker, OPNSense, Galera cluster, Nginx) 44

💡 Once your initial accounts are set up and no more sign ups are
required, remember to open each docker-compose.yml file on each web
server and ensure that SIGNUPS_ALLOWED=true are set to true. This is
especially sensitive if your Vaultwarden instance is public-facing, as
otherwise, anyone could create accounts and use your service,
including bots.

Set up user/org policies
Before inviting users, it is vital to set some ‘ground’ rules for authentication and
other security policies.

Go to Settings → Policies → Require two-step login. Turn it on.

Similarly, set up Master password requirements. Their length matters way
more than complexity. Minimum recommended is 12 characters (marked as
‘Good (3)’ in Vaultwarden).

Based on your preferences, you can enforce additional policies.

Deploy Vaultwarden in multi-site environment in HA (Docker, OPNSense, Galera cluster, Nginx) 45

Invite other Vaultwarden members
Since this is a new server, your family members technically need "new"
accounts.

Have family members sign up on your new Vaultwarden URL.

Go to your Organization > Members > Invite Member.

Type their email (must match what they signed up with). Verify that they
received an email based on the SMTP settings you placed in your docker-

compose.yml file previously.

Once they accept the invite, go back to Members and ‘Confirm’ them in the
Members tab.

Assign them to the correct Collections (e.g. children manage only their own
collection).

Feel free to play with additional settings in Vaultwarden web UI. Are there are
additional considerations to take into account? How about backup and
restoration? Or how can you go about updating your Vaultwarden instance? We
will review these in our last Step.

10. Backups, Restoration & Additional Security
Considerations

Deploy Vaultwarden in multi-site environment in HA (Docker, OPNSense, Galera cluster, Nginx) 46

In this article, I did not cover how to best harden your web and DB servers. It is
assumed that it is already done.

Backup & Recovery
While this set up is fully HA in terms of the web and DB servers being available
on two sites (with a Galera witness on a VPS outside), HA does not equal
backups. In the event of a breach (like ransomware) or a cascading service
failure, you will need a form of archived backups, ideally going back a few
months, so that you can determine the nearest and still safest version of your
data.

The recommended approach is to follow the 3-2-1 principle, i.e. by having 3
total copies of your data (the original plus two backups), storing them on 2
different media types (e.g. SSDs and cloud-based), and keeping at least 1
copy in an off-site location to protect against data loss from hardware
failure, cyberattacks, or natural disasters.

In addition, it is highly advisable to have a copy stored not just off-site but
also off-line from secure threats. Because consider what happens if you
lose all your passwords and stored SSH keys! Proper care needs to be
given, even if it is not done as often. In a homelab environment, an example
could be copying an encrypted version of the exported Vaultwarden data
onto a memory stick that is stored in your parents’ house twice a year.

Components to back up:

Component Location Priority Notes

Vaultwarden
data directory

/opt/vaultwarden/vw-data/ Critical

Contains RSA
keys,
attachments,
icons, config

MariaDB/Galera
database

Vaultwarden database Critical
Contains all vault
entries, users,
organizations

Docker
Compose file

/opt/vaultwarden/docker-
compose.yml High

Contains your
environment
configuration

Nginx virtual
host

/etc/nginx/conf.d/vaultwarden.conf Medium
Can be recreated
but saves time

Deploy Vaultwarden in multi-site environment in HA (Docker, OPNSense, Galera cluster, Nginx) 47

Component Location Priority Notes

SSL certificates Managed by ACME/OPNsense Low Can be
regenerated

Check out my previous article on how to back up VMs and LXCs from
Proxmox onto a GCP’s archive storage!

Recovery Situations
Below are three common scenarios that may occur:

Scenario A: Single Web Node Failure If one web server fails but others are
operational:

Restore the VM from Proxmox backup (or rebuild from template)

Syncthing will automatically sync `/opt/vaultwarden/vw-data/` from
healthy nodes

Verify RSA keys match: `md5sum /opt/vaultwarden/vw-data/rsa_key.*`
(compare across nodes)

Start the container: `cd /opt/vaultwarden && sudo docker compose up -
d`

Verify in HAProxy that the node rejoins the backend pool

Scenario B: Database Corruption or Loss

Stop Vaultwarden containers on ALL web nodes to prevent writes: cd
/opt/vaultwarden && sudo docker compose down

On your preferred (primary) Galera node, restore the database: gunzip <
/var/backups/vaultwarden/vaultwarden_YYYY-MM-DD_HHMMSS.sql.gz | mysql -u root -p vaultwarden

Verify Galera sync status: mysql -u root -p -e "SHOW STATUS LIKE 'wsrep_cluster_size';"

Restart Vaultwarden containers on all nodes

Scenario C: Complete Site Loss

If both sites are compromised (e.g., ransomware), do NOT connect
backup media to infected systems.

Rebuild infrastructure from clean Proxmox templates

Deploy Vaultwarden in multi-site environment in HA (Docker, OPNSense, Galera cluster, Nginx) 48

https://bachelor-tech.com/tutorial/bucket-storage-for-proxmox-vm-backups/
https://bachelor-tech.com/tutorial/bucket-storage-for-proxmox-vm-backups/
https://bachelor-tech.com/tutorial/bucket-storage-for-proxmox-vm-backups/

Restore database from off-site/offline backup

Restore /opt/vaultwarden/vw-data/ from backup (this includes the RSA keys).

Update DNS if IP addresses changed - do not open a public DNS record
but rather a local record (such as on OPNSense by utilizing the
Unbound DNS service).

Have all users verify their vaults and re-authenticate devices

Testing Your Backups
Backups are worthless if you cannot restore from them. Schedule quarterly
restore tests:

On a test VM (not production!), verify database backup integrity:*

gunzip -t /var/backups/vaultwarden/vaultwarden_latest.sql.gz && echo "Ar
chive OK"

Test actual restoration to a temporary database:*
mysql -u root -p -e "CREATE DATABASE vaultwarden_test;"
gunzip < /var/backups/vaultwarden/vaultwarden_latest.sql.gz | mysql -u ro
ot -p vaultwarden_test
mysql -u root -p -e "SELECT COUNT(*) FROM vaultwarden_test.users;"
mysql -u root -p -e "DROP DATABASE vaultwarden_test;"

Updating Vaultwarden
This part is simple, yet for completion, let’s cover it.

It is always good to look into the release notes before updating in case
some larger changes have been made that could break a dependency.

Take a snapshot of your web node before you carry out any changes.

Then proceed on each web node:

Pull the latest image:
sudo docker pull vaultwarden/server

Deploy Vaultwarden in multi-site environment in HA (Docker, OPNSense, Galera cluster, Nginx) 49

https://github.com/dani-garcia/vaultwarden/releases

Restart the docker container
cd /opt/vaultwarden
sudo docker compose down && sudo docker compose up --force-recreate
Once it loads and you can see the new version has loaded, press 'd' to d
etach it

Securing other components of your stack
Yet if you are looking for some tips, look at my previous article on how to
deploy a DB Galera cluster that touch on how you can use tools like ufw
firewall, fail2ban for securing your SSH access.

Putting Vaultwarden behind a VPN
So what else could we consider? You could consider NOT having a resolvable
public DNS name for your Vaultwarden instance and instead, have it available
only internally on your LAN. Then, if you have a VPN client deployed (such as a
WireGuard plugin in your OPNSense instance), you could make it available only
via that VPN connection. Security by obscurity is still a thing!

On your phone and other mobile devices, you can then install the VPN client to
reach your Vaultwarden server. Alternatively, if you do not often update your
passwords, simply let it sync whenever you are on your LAN - when outside,
your mobile device will work off its local cache, preserving access to all the
passwords up to the time of your last sync.

What else could go wrong?
While this guide is already rather comprehensive, there are quite a few other
things that could go wrong (mostly related to the infrastructure) that could
affect your Vaultwarden’s uptime. Examples include:

Galera cluster split-brain scenarios - What happens if sites lose
connectivity while both are accepting writes?

Certificate renewal failures - ACME/Let's Encrypt certificates expire; what
if renewal fails?

Deploy Vaultwarden in multi-site environment in HA (Docker, OPNSense, Galera cluster, Nginx) 50

https://bachelor-tech.com/detailed-guides/deploy-mariadb-galera-cluster-on-proxmox/security-hardening-logging-on-galera-template-lxc/
https://bachelor-tech.com/detailed-guides/deploy-mariadb-galera-cluster-on-proxmox/security-hardening-logging-on-galera-template-lxc/
https://bachelor-tech.com/detailed-guides/deploy-mariadb-galera-cluster-on-proxmox/security-hardening-logging-on-galera-template-lxc/

Syncthing out-of-sync states - How to identify and resolve when folders
get stuck in ‘Syncing’ state

HAProxy backend health check failures - How to diagnose when health
checks fail but the service appears to be running

WebSocket connection issues - Users report ‘offline’ status in apps
despite the site being reachable

Database migration version conflicts - What if nodes are running different
Vaultwarden versions with different schema expectations?

Let me know in the comments below in case you have come across any or if
you would like me to expand on how to recover from these before you
encounter them yourself 😇

This concludes our guide. I hope you enjoyed it.

Deploy Vaultwarden in multi-site environment in HA (Docker, OPNSense, Galera cluster, Nginx) 51

